
Security Target

Filkrypto, Release 1.0.2

Document Version: 1.3.1

Sponsor: Tutus Data AB

Title Security Target Filkrypto
Author(s): Melanie Wahl Status: Released
Version: 1.3.1 Classification: Public
File name: ST-Filkrypto.pdf Date: 01/10/07

Tutus Data AB, Svärdvägen 11, S-182 33 Danderyd, Sweden, Tel: +46 (0)8 551 102 30, Fax: +46 (0)8 551 102 39, E-mail: info@tutus.se, Web: http:// www.tutus.se

http://www.tutus.se/

Security Target

Document History

Version Date Author Changes to Previous Version
0.5 2006-09-06 Melanie Wahl Version sent for application
1.0 2006-09-19 Melanie Wahl Released Version
1.0.1 2006-09-20 Melanie Wahl Minor updates to 1.0 regarding the

comments of Per Holmer
1.0.2 2006-10-16 Melanie Wahl Updates regarding the comments of the

CB (TOR, Application Filkrypto 1.0, issued
2006-10-02)

1.0.3 2006-12-19 Staffan Persson Updates regarding the SER of ST
Filkrypto 1.0.2, version 1.0 provided by
ITSEF Combitech AB, issued on
2006-11-14 (Ref. No L1-06:0191)

1.0.4 2007-01-17 Staffan Persson Updates based on comments from
developer and external reviews.

1.0.5 2007-02-13 Sebastian Mayer Updates based on comments from
evaluator.

1.0.6 2007-02-27 Staffan Persson Updated after comments from the
developer and the certifier.

1.1 2007-03-01 Staffan Persson Updated version after internal review
1.2 2007-08-10 Staffan Persson Updated application notes for RFCs.
1.3 2007-09-30 Staffan Persson Updated for publication.
1.3.1 2007-10-01 Per Holmer Layout changes and spelling

©2007 Tutus Data AB Page 2 of 52

Security Target

Table of Contents
Document History..2

1 Introduction..7
1.1 ST Identification..7
1.2 ST Overview..7
1.3 CC Conformance Claim..7
1.4 Strength of Function Claim..7
1.5 ST Content and Organisation...8
1.6 Related Standards and Documents...9

2 TOE Description..10
2.1 Introduction...10
2.2 TOE Definition Scope...10
2.3 Supported Platforms and Environment..11
2.4 Installation..11
2.5 Configurations...12
2.6 TOE Operation and Use...12

2.6.1 Intended Use...12
2.6.2 Security Roles..13
2.6.3 Security Functionality...13

2.7 TOE Environment and Physical Protection...15

3 TOE Security Environment..16
3.1 Secure Usage Assumptions..16
3.2 Threats..17

3.2.1 Assets and Agents...17
3.2.2 Threats addressed by the TOE...17

3.3 Organisational Security Policy..19

4 Security Objectives...20
4.1 Security Objectives for the TOE..20
4.2 Security Objectives for the IT and non-IT Environment...20

5 IT Security Requirements..22
5.1 TOE Security Functional Requirements...22

5.1.1 Class FCS - Cryptographic Support...22
5.1.1.1 FCS_CKM.1(a) - Cryptographic key generation (standard key)..22
5.1.1.2 FCS_CKM.1(b) - Cryptographic key generation (derivation from password)..23
5.1.1.3 FCS_CKM.2 - Cryptographic key distribution...23
5.1.1.4 FCS_CKM.4 - Cryptographic key destruction...23
5.1.1.5 FCS_COP.1(a) - Cryptographic operation (file encryption)..23
5.1.1.6 FCS_COP.1(b) - Cryptographic operation (file decryption)..24
5.1.1.7 FCS_COP.1(c) - Cryptographic operation (keyed checksum generation)...24
5.1.1.8 FCS_COP.1(d) - Cryptographic operation (keyed checksum validation)...24

5.1.2 CLASS FDP - User Data Protection...24
5.1.2.1 FDP_ACC.1 - Subset access control (keystore access) ..24
5.1.2.2 FDP_ACF.1 - Security attribute based access control (keystore access)..24
5.1.2.3 FDP_ETC.2 - Export of user data with security attributes ..25
5.1.2.4 FDP_ITC.2 - Import of user data with security attributes ...25

5.1.3 Class FMT - Security Management...26
5.1.3.1 FMT_MSA.1 - Management of security attributes...26
5.1.3.2 FMT_MSA.2 - Secure security attributes..26
5.1.3.3 FMT_MSA.3 - Static attribute initialisation...26
5.1.3.4 FMT_SMF.1 - Specification of Management Functions...27

©2007 Tutus Data AB Page 3 of 52

Security Target

5.2 TOE Security Assurance Requirements..27

6 TOE Summary Specification...28
6.1 TOE Security Functions..28

6.1.1 SF.KEYGEN - Key generation..28
6.1.2 SF.KEYDER - Key derivation..28
6.1.3 SF.FILE_CRYPT - File encryption / decryption..28
6.1.4 SF.CREATE_HMAC...29
6.1.5 SF.CHECK_INTEGRITY...29
6.1.6 SF.DIST_KEYFILE..29
6.1.7 SF.MANAGE..30
6.1.8 SF.CLEAR...31

6.2 TOE Assurance Measures...31

7 PP Claims...33

8 Rationale..34
8.1 Security Objectives Rationale..34

8.1.1 Security Objective Coverage..34
8.1.2 Security Objectives Sufficiency...34

8.2 Security Requirements Rationale...37
8.2.1 Security Requirements Coverage...37
8.2.2 Functional Security Requirements Sufficiency..38
8.2.3 Rationale of Selected Assurance Level..40
8.2.4 Rationale of SOF...40
8.2.5 Security Requirements Dependency Analysis..40

8.2.5.1 Security Functional Requirements Dependency Analysis...41
8.2.5.2 Security Assurance Dependencies Analysis...43
8.2.5.3 Rationale of unresolved dependencies..43

8.2.6 Internal Consistency and Mutual Support of SFRs ...43
8.3 TOE Summary Specification Rationale..44

8.3.1 Security Functions Justification...45
8.3.2 Mutual Support of Security Functions..47
8.3.3 Assurance Measures Rationale..47
8.3.4 Minimum Strength of Function Rationale..47

8.4 PP Claims Rationale..47

9 Appendix...48

©2007 Tutus Data AB Page 4 of 52

Security Target

Index of Tables
Table 1: Assets..17

Table 2: Agents...17

Table 3: Threats addressed by the TOE..18

Table 4: Functional Requirements on the TOE..22

Table 5: Security Assurance Components..27

Table 6: TOE Assurance Measures...32

Table 7: Objectives related to threats, assumptions and policies..34

Table 8: Sufficiency of objectives countering threats...35

Table 9: Sufficiency of objectives meeting assumptions...37

Table 10: Sufficiency of objectives meeting OSPs...37

Table 11: TOE Security objectives meeting SFRs ...38

Table 12: TOE Security Objectives and the Rationale for Mapping to the SFRs.......................................40

Table 13: Security Functional Requirements Dependencies for the TOE...43

Table 14: TOE Security Functions meeting SFRs and Vice Versa..45

Table 15: Security Function Rationale..47

Illustration Index

Illustration 1: TOE architecture and boundaries..11

©2007 Tutus Data AB Page 5 of 52

Security Target

This page is intentionally left blank

©2007 Tutus Data AB Page 6 of 52

Security Target

1 Introduction

1.1 ST Identification
ST Title: Filkrypto Security Target

Product Name: Filkrypto

Product Version: Release 1.0.2

Assurance level: EAL3

CC Version: 2.3 as of August 2005

ST Author: Melanie Wahl, Staffan Persson

ST publication date: 01/10/07

ST Version: 1.3.1

Keywords: File encryption / decryption

1.2 ST Overview
This document is the Security Target (ST) for the Filkrypto application, release 1.0.2,
developed by Tutus AB.

Filkrypto is an application for file encryption on Microsoft Windows platforms. The
program is using a Swedish government owned and approved cryptographic library
to implement all cryptographic related functions.

Filkrypto is a file encryption application intended to be protect sensitive information
in files when transmitting or storing them in unprotected environments. Filkrypto is
mainly intended for government use..

The ST contains a description of the security objectives and the requirements, as well
as the necessary functional and assurance measures provided by the TOE. The ST
provides the basis for the evaluation of the TOE according to the Common Criteria
for Information Technology Security Evaluations (CC).

1.3 CC Conformance Claim
This ST is CC Part 2 conform and CC Part 3 conform, with the assurance level of
EAL3. No augmentation is performed for security requirements concerning the
TOE.

The Security Target is following the structure given in part 1 of the Common
Criteria, using the guidance from ISO/IEC JTC 1/SC 27 N 2449 “Information
technology – Security techniques – Guide for the production of protection profiles
and security targets” ([GPPS]).

This ST does not claim conformance to any existing Protection Profile (PP).

1.4 Strength of Function Claim
The TOE contains of one function realized by a probabilistic mechanism, for which
a SOF claim is provided in this ST. This is the integrity check at file decryption. For
this function the minimum strength of function claimed is SOF-high.

No claims are made about the strength of function for any cryptographic functions

©2007 Tutus Data AB Page 7 of 52

Security Target

based on cryptographic mechanisms. Further no claims are made about the functions
of key generation and key derivation from password which are based on probabilistic
and permutational mechanisms. The cryptographic verification as well as the SOF
analyse of random number generation and key derivation mechanism is performed
by the government agency TSA.

1.5 ST Content and Organisation
The ST has been structured in accordance with [CC] Part 1 and [GPPS]. The main
sections of the ST are the TOE description, TOE security environment, security
objectives, IT security requirements, rationale and annexes.

The TOE description provides general information about the TOE, serves as an aid
to understanding the nature of the TOE and its security functionality, and provides
context for the ST's evaluation.

The TOE security environment describes security aspects of the environment in
which the TOE is to be used and the manner in which it is to be employed. The
TOE security environment includes:

a) assumptions regarding the TOE's intended usage and environment of use

b) threats relevant to secure TOE operation

c) organisational security policies with which the TOE must comply

The security objectives reflect the stated intent of the TOE. They pertain to how the
TOE will counter identified threats and how it will cover identified organisational
security policies and assumptions.

Each security objective is categorised as being for the TOE or for the environment.

The security requirements section provides detailed IT security requirements for the
TOE in separate subsections.

The IT security requirements are subdivided as follows:

a) TOE Security Functional Requirements

b) TOE Security Assurance Requirements

Security requirements for the IT environment are not defined.

The TOE summary specification addresses the security functions that are represented
by the TOE to answer the security requirements.

The rationale presents evidence that the ST is a complete and cohesive set of
requirements and that the TOE provides an effective set of IT security
countermeasures within the security environment. The rationale is in three main
parts. First, a security objectives rationale demonstrates that the stated security
objectives are traceable to all of the aspects identified in the TOE security
environment and are suitable to cover them. Then, a security requirements rationale
demonstrates that the security requirements for the TOE are traceable to the security
objectives and are suitable to meet them. Finally the TOE summery specification
demonstrates, that the TOE security functions and assurance measures are suitable to
meet the security requirements for the TOE.

The appendix (annex) contains a list of abbreviations as well as a glossary for this ST.

©2007 Tutus Data AB Page 8 of 52

Security Target

1.6 Related Standards and Documents
[BNetzA] Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post

und Eisenbahnen, Bekanntmachung zur elektronischen Signatur
nach dem Signaturgesetz und der Signaturverordnung (Übersicht
über geeignete Algorithmen), 2. Januar 2006

[CC] Common Criteria (CC) for Information Technology Security
Evaluation, August 2005, Version 2.3.

» Part 1: Introduction and general model. August 2005.
Version 2.3. CCMB-2005-08-001

» Part 2: Security functional requirements. August 2005.
Version 2.3. CCMB-2005-08-002

» Part 3: Security Assurance Requirements. August 2005.
Version 2.3. CCMB-2005-08-003

[CEM] Common Methodology for Information Technology Security
Evaluation. Evaluation Methodology. August 2005. Version 2.3.
CCMB-2005-01-004

[GPPS] ISO/IEC TR 15446:2004(E), Guide for the production of
Protection Profiles and Security Targets, First edition 2004-07-01

[Lenstra] Lenstra, A.K.; Verheul, E.R.: Selecting Cryptographic Key Sizes,
November 1999

[RFC 2104] Request for Comments: 2104, HMAC: Keyed-Hashing for
Message Authentication, Februar 1997

[RFC 2406] Request for Comments: 2406, IP Encapsulating Security Payload
(ESP), November 1998

[RFC 2898] Request for Comments: 2898, PKCS #5: Password-Based
Cryptography Specification, Version 2.0, September 2000

©2007 Tutus Data AB Page 9 of 52

Security Target

2 TOE Description

This section describes the Target of Evaluation (TOE) in terms of the class of
product, the operational environment, and the provided security functionality. This
chapter provides a general description of the product without focusing on the
evaluated configuration.

2.1 Introduction
Filkrypto is a software only product for file encryption in Microsoft Windows
environments, running on a single user PC. The program could be used entirely
without any further infrastructure and therefore also contains functions for key
generation and distribution.

Only symmetrical algorithms are used to implement the cryptographic operations of
encryption and decryption by Filkrypto. The associated keys are either generated
within the application as “standard keys” or are generated elsewhere and imported
into Filkrypto as “form keys”. The form keys are imported into Filkrypto by entering
the key from a form received.

Filkrypto stores the keys within password encrypted files called keystores or keyfiles.
A certain password policy is implemented for the passwords used. A default keystore
also stores the serial number of the application. Further keystores could be created by
the user which can be stored on removable media e.g., to exchange keys.

Besides encryption of files ensuring confidentiality of information included,
Filkrypto uses another cryptographic mechanism to detect loss of integrity; keyed
hash functions are used over every cipher generated by Filkrypto. This applies to data
files as well as to key files. Before decryption, these hash values are validated.

Furthermore, Filkrypto removes files by attempting to overwrite them with random
data1. This is triggered by user actions. For example, in case of emergency the default
keystore could be deleted by pushing the emergency erase button.

The program uses a TSA developed cryptographic library for all cryptographic and
probabilistic functions. The functions used are described in detail in the following
chapters.

2.2 TOE Definition Scope
The Target of Evaluation is limited to the software application Filkrypto, version
1.0.2, developed by Tutus AB. Filkrypto consists of four parts: the graphical user
interface (GUI), the cryptographic library (cryptolib), the application supervisor and
the XML parser (Expat). The GUI handles all user interaction and the Cryptolib all
cryptographic operations, while the application supervisor handles initializations,
starting, stopping, and cleanup in the application. All security critical operations are
handled by the Cryptolib and the application supervisor..

Cryptolib depends on FMSSL and Expat. FMSSL is a version of the OpenSSL
crypto library (http://www.openssl.org) in which all underlying cryptographic and
random algorithms have been substituted by compatible algorithms developed and
approved by TSA. Expat is an XML-parser (http://expat.sourceforge.net) used to
parse the encrypted file format.

The cryptographic mechanisms in the Cryptolib are provided and approved by the

1 Depending on the stotage technologie this might not work in any case.

©2007 Tutus Data AB Page 10 of 52

Security Target

Swedish NCSA (TSA). The cryptographic mechanisms are part of the TOE, but
their cryptographic properties are not being part of the CC evaluation.

The GUI's only job is to identify for the underlying Cryptolib what operation to
perform on which file. Therefore the GUI is not security critical.

In the following picture, the architecture of TOE Filkrypto and its boundaries are
shown.

Illustration 1: TOE architecture and boundaries

2.3 Supported Platforms and Environment
The underlying platform for the evaluation is limited to the MS Windows XP Client
operating system. No additional special equipment or infrastructure is needed.

2.4 Installation
Filkrypto is easy to install by the user himself. The first time the user runs
“Filkrypto.exe”, he is called to select an application password (password to access the
default application keystore) and enter the serial number of the application.
Furthermore the user can choose the language of the application and whether the
data should be saved on the hard drive or whether the whole application should be
kept in a USB Data storage device, running everything from there.

Any software updates that are required during the life cycle of Filkrypto have to be
installed by the user.

©2007 Tutus Data AB Page 11 of 52

Security Target

2.5 Configurations
The application cannot be configured. The algorithms used, key length, etc. are static
parameters of the application, which can only be changed during application
development.

The user can only set up in which mode he wants the application to run and what he
wants to be displayed in detail. These settings have nothing to do with the security
configuration of the application.

2.6 TOE Operation and Use

2.6.1 Intended Use

With Filkrypto, two or more individuals can exchange electronic documents securely
over unprotected communication paths, e.g. networks, without risking any
unauthorized persons reading the documents. To achieve this, the documents are
encrypted before they are sent between the two parties, and are thus made unreadable
for anyone who does not have access to the encryption key required for decrypting
the documents.

The user could select to run the Filkrypto application in “Simple” or “Advanced
mode”. Encryption and file exchange are done in nine steps when the application
runs in Simple mode.

First, keys are created, distributed, and made accessible using these steps:

1. The two parties agree on one or more key names that should be used when
exchanging files, and which password(s) should be used for protecting the key(s).

2. One of the parties creates the key(s) that have been agreed upon.

3. The encryption key(s) are exported from the Filkrypto application with the
selected password in the password-encrypted transport key container.

4. The key(s) are distributed to the concerned parties. This should be done off-line,
e.g., via a floppy disc, a USB-Data Storage Device, or similar means, to prevent
any unauthorized person from accessing the key.

5. The other parties import the key(s), or add shortcuts to the key(s) if they are
located in external media (such as a floppy disc or a USB Data Storage Device),
and enter the relevant password, so that all the parties have access to the key(s)
within the transport key container that has been agreed upon.

Now the parties can start encrypting files for secure file exchange using these steps:

6. Drag the file(s) that you want to encrypt into the Filkrypto application, and select
which key you wish to use.

7. Select the folder in which the file(s) should be saved and enter the desired file
name.

Selected file(s) are now available in encrypted format in the directory chosen.

8. Send the file(s) to the concerned parties.

9. The receiving parties drag the file(s) into the Filkrypto application, and drop them
there. The file(s) are automatically decrypted if the required keys are available in
the receiving parties' Filkrypto applications.

The mode of operation to be selected by the user differs only in the provided level

©2007 Tutus Data AB Page 12 of 52

Security Target

of guidance, no additional security functionality is given in “Advanced Mode” in
contrast to “Simple Mode”. Further the way cryptographic operations are performed
is the same in both modes. For example in Advanced mode the encrypted and
decrypted files are shown inside the application and a user can select if he wants to
display files separately or if he only wants to view encrypted / decrypted files.
Further, the language can be selected, as well as whether the Filkrypto application is
displayed always on top.

2.6.2 Security Roles

The TOE is not aware of any user roles or even the concept of users, so any user
with access to the TOE or the TOE environment is able to perform any operation.

2.6.3 Security Functionality

The following security features are provided by the TOE:

» Encryption of files1: Files are encrypted using the symmetric algorithm AES
in CBC2 mode with a 256-bit key to ensure confidentially of information while
stored and/or during transmission. The ciphers are created out of files using
keys selected by the user out of the actual key list presented or using the default
application key. A file encrypted by Filkrypto results in an xml file containing
additional information on which key(id) was used to encrypt the file, the time
when the file was encrypted, the original file's file name, and the encrypted data.
The format of the encrypted data is based on a modified IPsec ESP [RFC
2406] packet format.

» Integrity protection of files: To detect loss of integrity of data files or
keystores, a keyed hash functions is used over every cipher generated by
Filkrypto. The algorithm used is HMAC-SHA256 – a message authentication
function using a 256-bit key and a SHA-256 hash function. The key used to
calculate the HMAC is a 256-bit key only used for this purpose. Therefore this
key has to be shared between the communication partners, in addition to
sharing the respective encryption/decryption key.

» Decryption of files: Files are decrypted by Filkrypto, ensuring that only those
users who possesses the right key or respectively know the associated password
can read the encrypted file. Therefore confidentiality of information can be
implemented while storing, as well as during transmission.

» Integrity check of files: Within this feature, potential loss of integrity of data
files and keystores can be detected by validating the keyed hash values provided
before decryption. The algorithm used is HMAC-SHA256 – a message
authentication function using a 256-bit key and a SHA-256 hash function. The
key used to calculate the HMAC is a 256-bit key generated for this purpose.
Therefore this key has to be shared between the communication partners, in
addition to sharing the respective encryption / decryption key.

» Key management: Key management is a process to manage the whole life-
cycle of cryptographic keys from generation through distribution to archiving
and destruction. The following security relevant key management features are
implemented by Filkrypto:

1 Files are the data files which have to be encrypted and exchanged with other users as well as keystores (default
keyfiles and keyfiles for exchanging)

2 Cipher Block Chaining

©2007 Tutus Data AB Page 13 of 52

Security Target

- Key generation:

- Key derivation: The keys used to protect the encrypted keystores
are derived from passwords entered by the users. For this purpose,
the algorithm PBKDF2 described in [PKCS#5] (RFC 2898) is
used.

- Data file encryption keys: Only symmetric AES keys with a key
length of 256 bits are generated by the key generator of Filkrypto.
The key generator is provided and approved by TSA.

- Import / Export keys (standard keys): To exchange the keys between
different users (users with different application instances running), the keys
can be exported within password protected, encrypted keyfiles created by a
user of Filkrypto. On the receivers side, these keys can be imported in the
application only by knowing the password applied to the encrypted
keystore.

- Import of form keys: “Form keys” are generated elsewhere and then
imported into Filkrypto by entering the key manually from a form
received.

- Key storage : All keys are stored in password-protected encrypted key
storages.

- Safe erasure is implemented by overwriting the files with random data
generated by the computer. In the case of an emergency, all encryption
keys in the default keystore have to be deleted immediately. Further, files
and individual encryption keys can be deleted upon user request, as well.

Features provided by the TOE, but not considered security enforcing functions:

» Password quality: Filkrypto uses a simple password quality algorithm. The
password gets an original rating based on its length, which must be at least
seven characters. Then the password is scanned for repeated character patterns;
every repeated pattern reduces the original rating. Then the password gets
additional rating if the password contains variations of characters, for example:
escape- , numeric-, upper-case and lower-case characters. This algorithm is
present only to help the user to select a good password. It can easily be
circumvented by an evil user, and therefore no security properties for it are
claimed.

» Audit: The audit function is for convenience and serves as a help to the user. It
shows the different actions (encryption/ decryption) performed, the path and
names of the files, the key used, and the key's ID.

» Key validity: While generating a key, the user is called to enter the validity time
of the key. When trying to us an expired key Filkrypto warns the user about it,
but the user is allowed to continue.

» Parsing XML-files: Only syntax checks are made; therefore, this feature is not
security relevant.

» Form keys cannot be exported: Form keys cannot be exported from default
keystores. However, the default keystore containing form keys, is an ordinary
file and can, of course, be copied using standard Windows utilities. Therefore
this feature is only provided to make sure that the user does not export form
keys by mistake. Due to this, no security properties for the feature are claimed.

©2007 Tutus Data AB Page 14 of 52

Security Target

» Integrity check of form keys: Before importing a form key, the application
validates the integrity of the key entered by the user. Therefore 64 bit of the
SHA-1 hash value of the key are concatenated at the end of the key string by
the party who generates the key. This value is compared to the corresponding
value calculated over the given form key. This feature only ensures that the user
does not make failures while entering the “form key” from the form, assumed
to be received in a secure manner out of band. This addresses only availability
aspects and therefore not regarded as a security enforcing function.

» Expanding given form keys: Due to integrity checks of files encrypted with a
form key the application needs as well an HMAC key. Since the manual entered
length of the string for the form key could only be used for one 256 bit key,
Filkrypto uses an algorithm provided and owned by TSA to expand this key to
the double length of 512 bit used for both keys. For Filkrypto only the key
import is security relevant not the implementation of key expansion and
therefore no security properties for it are claimed.

2.7 TOE Environment and Physical Protection
The TOE is expected to be operated as a single user machine in a physically secure
and well managed environment without a direct connection to an untrusted network.

©2007 Tutus Data AB Page 15 of 52

Security Target

3 TOE Security Environment

3.1 Secure Usage Assumptions
The following conditions are assumed to exist in the TOE operational environment.
These assumptions include essential environmental constraints on the secure use of
the TOE. Assumptions about the intended usage of the TOE are not made.

A.SINGLE The TOE runs on a single user machine with access
protected by the TOE environment; i.e., only authorised
users of the TOE environment may access the TOE. This
includes access control provided by the operating system or
equivalent and protection against malware.

A.KEYDIS It is assumed that keys used for encryption/decryption and
as well as the associated keys used for integrity checks are of
high quality and are not disclosed to unauthorized users. The
keys are assumed to be distributed only to those parties who
are authorized to use them in order to encrypt and decrypt
files.

A.FORMKEYDIS Form keys are assumed to be distributed out of band from
the generating party in a secure manner, therefore they are
assumed to be not disclosed and tampered during
distribution. Otherwise the same assumptions apply to form
keys as to keys generated in Filkrypto as described in
A.KEYDIS. They are of high quality and not disclosed to
unauthorized users.

A.PHYSICAL The TOE is operated in a physically secure and well
managed environment.

A.USER The TOE user is trustworthy and trained to manage and
perform encryption of classified information in accordance
with any existing security policies and information
classification policies. This means especially that he knows
how to classify information and how to deal with, e.g.,
encrypting all files containing sensitive information with the
appropriate key before exporting the file out of the TOE
and/or its TOE environment.

A.CONNECT The single user PC on which the TOE is running is not
connected directly to an untrusted network. This means that
the PC is either assumed not to be connected to any
networks or it is connected to a trusted network which is
protected against attacks, so that no undocumented security
critical side effects on the security functions of the TOE,
which are resided in the PC, are assumed coming from this
network.

©2007 Tutus Data AB Page 16 of 52

Security Target

3.2 Threats
The threats described in this chapter are addressed by the TOE.

3.2.1 Assets and Agents

The assets and user agents used for the definition of threats are defined in the
following tables.

Asset Description Type of Data

Data files
(primary asset)

Filkrypto files that contain the information to
be protected.

User data

Table 1: Assets

Agent Description

Attacker An attacker who has access to any communication channel over
which the integrity protected and encrypted Filkrypto files are
transferred, e.g., networks or other paths of transmission where
communication media like CDs, DVDs including the encrypted files
could be shared.

Table 2: Agents

3.2.2 Threats addressed by the TOE

The threats below must be countered by the TOE.

Threat: T.DISCLOSE – loss of confidentiality

Attack An attacker of one of the communication paths over which the Filkrypto file
is transferred succeeds in accessing the content of the file, i.e. the attacker
violates the confidentiality of the information included in the file.

The attack is achieved by passive attacks recording encrypted data during
the transfer (e.g. eavesdropping of network communication, interception of
dispatch services) and decoding the encrypted data.

In general the attacker has no access to the right key and has to perform
cryptanalysis to reveal the underlying plain text of the encrypted file.

Asset Data files

Agent Attacker

©2007 Tutus Data AB Page 17 of 52

Security Target

Threat: T.TEMPER – loss of integrity

Attack An attacker of one of the communication paths over which the Filkrypto file
is transferred tampers with the file, i.e. replacing or modifying the content
of the file in a way that is not detected.

The attack is achieved by interrupting the transfer due to possess the file
to accomplish an active attack violating the integrity of the information
included in the file before sending it to the receiver. Therefore the attacker
has either to break the integrity protection of the file, modifying the content
of the file and reconstructing the protection again. Or the attacker replaces
the whole file and constructs the integrity protection. Afterwards the file is
sent to the intended destination. In both cases the attacker has to possess
either the right key used for integrity protection or he has to perform
cryptanalysis to reveal the right key. For possibilities to get the right key
see T.DISCLOSE.

Asset Data files

Agent Attacker

Table 3: Threats addressed by the TOE

In both threats described above the primary subject of the attacks is the information
included in the data files transferred over an unprotected communication path.

The attackers specified as threat agents in both threats above are assumed to possess
very limited opportunity of attacks, characterized as follows:

» Expertise: It is assumed that the key material has not been leaked (A.KEYDIS,
A.FORMKEYDIS) and the implementation is not flowed (A. PHYSICAL).
The attackers know IP and related networking protocol basics and are trying to
find vulnerabilities publicly known about cryptographic algorithms (systematic
weaknesses). The attacker must be familiar with the “alternative” distribution
channels over which the encrypted data will be sent. Therefore a high level of
expertise is required to successfully gain the plain text from encrypted data.

» Resources: The resource requirements to mount an attack of the types
described above are high – a very large amount of computing power, either
distributed or within one unit would be required to break the encryption in an
appropriate time scale, expected to do not exhaust the range of at maximum
some man days. In contrast to the attack within T.DISCLOSE the attack within
T.TEMPER must be launched e.g. nearly on the fly, to ensure that the attack
could not be detected. Network attack tools, especially network sniffers,
available on the Internet are considered to be available, too. Further the attacker
has the possibility to buy the product and perform cryptanalysis on the
algorithms used or disassembling and reverse engineering the TOE. Therefore it
is very easy for the attacker to get information about how the TOE operates.
But attackers have no access (neither physical nor over the network – A.
PHYSICAL, A.CONNECT) to the TOE where the information is encrypted or
decrypted.

» Motivation: The TOE aims to protect sensitive information during the transfer
over any communication paths. So, the attackers are assumed to be motivated
by high-value assets and e.g. by the fact to "hack" sensitive information.

As described above it is very easy for an attacker to get information about how the
TOE is operating in general – therefore an attacker will reveal easily that he has to
combine the attacks described in T.DISCLOSE and T.TEMPER to be successful in

©2007 Tutus Data AB Page 18 of 52

Security Target

violating the integrity and/or confidentiality of the file's content. Because the
transferred file is first encrypted and afterwards the encrypted file is integrity
protected.

Attacks which modify the content of the transferred file without breaking the
integrity protection are as well conceivable. May by an attacker completely intercepts
the communication so that the file does not reach it's destination. This attacks have
the same effects as errors during communication have. Preliminary the availability of
the information transferred is violated. The receiver fails e.g. in validating the integrity
of the file, the file will not be decrypted. This attacks will not be regarded here
deliberately, because it will be detected anyway.

If vulnerabilities were present in the TOE’s encryption algorithm, cryptographic
functions used for integrity protection, key generating algorithm or in there
implementation, this may be exploited to decrease the level of expertise or resource
required for success.

The opportunity to mount all attacks depends on the fact that the transferred
Filkrypto file is in general available for an attacker.

3.3 Organisational Security Policy
P.ERASURE Individual encryption keys shall be deleted upon the request

of the authorized user.

P.EMERGENCY All encryption keys contained in the default keystore shall be
deleted in case of emergency.

P.ALGORITHM The TOE shall only allow the use of approved encryption
algorithms and key lengths, i.e. AES 256 bit.

©2007 Tutus Data AB Page 19 of 52

Security Target

4 Security Objectives

The security objectives provide a concise statement of the intended response to the
security problem. This section describes which security needs will be addressed by the
TOE and which will be addressed by the TOE environment, in the form of a
statement of security objectives.

4.1 Security Objectives for the TOE
The following are the IT security objectives to be met by the TOE.

O.DISCLOSE The TOE must provide mechanisms that protect the
information of a transmitted Filkrypto file such that its
content is confidentiality-protected and only accessible for
authorized users.

O.TAMPER The TOE must provide mechanisms that detect if an
attacker has tampered with a transmitted Filkrypto file (i.e.
replacing or modifying the content of the file); mechanisms
must be provided to detect loss of integrity of the
information in the file.

O.ERASURE Individual encryption keys must be deleted upon the request
of the authorized user.

O.EMERGENCY All encryption keys contained in the default keystore must be
deleted in case of emergency.

O.ALGORITHM The TOE must only allow the use of approved encryption
algorithms and key lengths, i.e. AES and 256 bit.

4.2 Security Objectives for the IT and non-IT Environment
The following are the security objectives that are to be satisfied without imposing
technical requirements on the TOE. That is, they do not require the implementation
of functions in the TOE hardware and/or software. These security objectives are
assumed to be in place in the TOE environment. They are included as necessary to
support the TOE security objectives in addressing the security problem defined in the
TOE security environment.

Thus, the following environmental objectives may partly be IT specific and partly
related to administrative methods and/or procedural measures.

OE.KEYDIS Keys used for encryption and decryption as well as the keys
used for integrity checks must be of high quality and must
not be disclosed to unauthorized users. They must be
distributed only to those parties who are authorized to use
them in order to encrypt and decrypt files.

OE.FORMKEYDIS Form keys must be distributed in a secure manner from the
generating party, therefore they must not be disclosed and
tampered during distribution. Otherwise the same
requirements must be ensured to form keys as to keys
generated in Filkrypto as described in OE.KEYDIS. They
must be of high quality and must not disclosed to
unauthorized users.

©2007 Tutus Data AB Page 20 of 52

Security Target

OE.SINGLE The TOE must be run on a single user machine with access
to the TOE protected by the TOE environment; i.e., only
authorised users of the TOE environment have access to the
TOE. This includes access control provided by the operating
system or equivalent and protection against malware.

OE.PHYSICAL The TOE must be operated in a physically secure and well
managed environment.

OE.USER The TOE User is trustworthy and trained to perform all
actions in accordance with any existing security policies and
information classification policies.

OE.CONNECT The single user PC on which the TOE is running must not
be connected directly to an untrusted network. This means
that the PC must either not be connected to any networks or
it must be connected to a trusted network, which is protected
against attacks, so that no undocumented security critical side
effects on the security functions of the TOE are coming
from this network.

©2007 Tutus Data AB Page 21 of 52

Security Target

5 IT Security Requirements

The following table gives an overview of the functional components from the
Common Criteria Part 2 that are relevant for this TOE.

Component Component Name

FCS_CKM.1 Cryptographic key generation

FCS_CKM.2 Cryptographic key distribution

FCS_COP.1 Cryptographic operation

FCS_CKM.4 Cryptographic key destruction

FDP_ACC.1 Subset access control

FDP_ACF.1 Security attribute based access control

FDP_ETC.2 Export of user data with security attributes

FDP_ITC.2 Import of user data with security attributes

FMT_MSA.1 Management of security attributes

FMT_MSA.2 Secure security attributes

FMT_MSA.3 Static attribute initialisation

FMT_SMF.1 Specification of Management Functions

Table 4: Functional Requirements on the TOE

The TOE will implement only one Security Function Policy (SFP) called keystore
access control SFP. The policy' s name indicates that it is a policy regulating the
access to the keystore. The policy consist of two parts, one creating the keystore,
setting the stage for accessing the keys which will be stored in the keystore.

The SFP regulates that the password for accessing the keystore is chosen by the user
and assigned to the keystore first.

This is enforced:

» when starting the application the first time. The user has to choose the
password for the default key store. The password is assigned to the default
keystore and has to be entered each time the user wants to access the default
keystore while starting the application.

» when the user wants to export keys out of the application. Here the user is as
well ask to choose a password. This password has to be entered each time when
a user wants to access the keystore, due to import the keys into his default
keystore.

Further the SFP regulates that the access to the keystore is granted only to users
providing the right password which has been assigned before.

5.1 TOE Security Functional Requirements

5.1.1 Class FCS - Cryptographic Support

5.1.1.1 FCS_CKM.1(a) - Cryptographic key generation (standard key)

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance

©2007 Tutus Data AB Page 22 of 52

Security Target

with a specified cryptographic key generation algorithm
provided by TSA and specified cryptographic key sizes 256
bits that meet the following: conform to the TSA
requirements.

Application Note: For cryptographic key generation an algorithm owned and
approved by TSA is used. A claim about the strength of function of the underlying
random number generator can not be provided in this ST. The SOF analyse is done
by TSA.

5.1.1.2 FCS_CKM.1(b) - Cryptographic key generation (derivation from
password)

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance
with a specified cryptographic key derivation algorithm in
accordance with a specified cryptographic algorithm
PBKDF2 and cryptographic key sizes 512 bits that meet the
following: conform to PKCS#5 and RFC 2898.

Application Note: Not the full conformance to RFC 2898 is required. Only the key
derivation part using PBKDF2 is relevant. The key derived is of the length of 512
bits. The first 256 bit are used for the encryption key and the last 256 bit for the
associated HMAC-Key. No SOF is claimed for the key derivation from password in
this ST.

5.1.1.3 FCS_CKM.2 - Cryptographic key distribution

FCS_CKM.2.1 The TSF shall distribute cryptographic keys in a password
protected encrypted keystore.

Application Note: The keys are distributed in a password protected encrypted
keystore. The SFR describes the format used for the encapsulation of the keys as a
part of the the keystore. The distribution method is not relevant for the TOE
security and therefore not defined. The format is also used for the default keystore
file which is not to be used to exchange between users but stored on the hard disk.

5.1.1.4 FCS_CKM.4 - Cryptographic key destruction

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with
a specified cryptographic key destruction method
overwriting with random data in case of keys stored on
files, with zeros when keys are stored in memory that
meets the following: conform to the TSA requirements.

Application Note: The method used overwriting files with random data is owned
and approved by TSA..

5.1.1.5 FCS_COP.1(a) - Cryptographic operation (file encryption)

FCS_COP.1.1 The TSF shall perform encryption of files in accordance
with a specified cryptographic algorithm AES and
cryptographic key sizes 256 bits that meet the following:
conform to RFC 2406.

Application Note: Not full conformance to RFC 2406 is required. Only compliance
to the payload format as specified by this RFC is required.

©2007 Tutus Data AB Page 23 of 52

Security Target

5.1.1.6 FCS_COP.1(b) - Cryptographic operation (file decryption)

FCS_COP.1.1 The TSF shall perform decryption of files in accordance
with a specified cryptographic algorithm AES and
cryptographic key sizes 256 bits that meet the following:
conform to RFC 2406.

Application Note: Not full conformance to RFC 2406 is required. Only compliance
to the payload format as specified by this RFC is required.

5.1.1.7 FCS_COP.1(c) - Cryptographic operation (keyed checksum generation)

FCS_COP.1.1 The TSF shall perform generation of keyed checksums in
accordance with a specified cryptographic algorithm HMAC
with SHA-256 and cryptographic key sizes 256 bits that
meet the following: conform to RFC 2104.

Application Note: Not full conformance to RFC 2104 is required. Only the format
and method for keyed hashing is implemented as in the standard.

5.1.1.8 FCS_COP.1(d) - Cryptographic operation (keyed checksum validation)

FCS_COP.1.1 The TSF shall perform validation of keyed checksums in
accordance with a specified cryptographic algorithm HMAC
with SHA-256 and cryptographic key sizes 256 bits that
meet the following: conform to RFC 2104.

Application Note: Not full conformance to RFC 2104 is required. Only compliance
to the format and method for keyed hashing is implemented as in the standard. For
the checksum validation during file decryption (data file encryption as well as key file
decryption) SOF high is claimed.

5.1.2 CLASS FDP - User Data Protection

5.1.2.1 FDP_ACC.1 - Subset access control (keystore access)

FDP_ACC.1.1 The TSF shall enforce the keystore access control SFP on
all users, the keystore, the creation of the keystore and
the access of the keystore..

5.1.2.2 FDP_ACF.1 - Security attribute based access control (keystore access)

FDP_ACF.1.1 The TSF shall enforce the keystore access control SFP to
objects based on the following: users and the password.

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects
is allowed:

● the user must choose a password with
appropriate quality which is assigned to the
keystore when creating the keystore out of the
keyfile,

● the user must enter the correct password to
access the keystore.

FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to

©2007 Tutus Data AB Page 24 of 52

Security Target

objects based on the following additional rules: none.

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects
based on the rules: none.

5.1.2.3 FDP_ETC.2 - Export of user data with security attributes

FDP_ETC.2.1 The TSF shall enforce the keystore access control SFP
when exporting user data, controlled under the SFP(s),
outside of the TSC.

FDP_ETC.2.2 The TSF shall export the keys with the user data's associated
security attributes.

FDP_ETC.2.3 The TSF shall ensure that the security attributes, when
exported outside the TSC, are unambiguously associated
with the exported user data.

FDP_ETC.2.4 The TSF shall enforce the following rules when user data is
exported from the TSC: the keys must be wrapped in a
password encrypted keyfile. Therefore

● the keyfile must be encrypted using the
encryption key derived from the assigned
password (key unwrap password),

● the keyfile must be integrity protected using the
HMAC key derived from the assigned password
over the encrypted key file.

Application Note: This requirement regulates that only password encrypted and
integrity protected key files are exported out of the TOE.

The right format of the keystore (binary file) and keyfile (XML-file) is useful
regarding availability but not regarded as security relevant and therefore not described
in the requirement. The security attribute is therefore only the password.

5.1.2.4 FDP_ITC.2 - Import of user data with security attributes

FDP_ITC.2.1 The TSF shall enforce the keystore access control SFP on
keyfiles when importing user data, controlled under the SFP,
from outside of the TSC.

FDP_ITC.2.2 The TSF shall use the security attributes associated with the
imported user data.

FDP_ITC.2.3 The TSF shall ensure that the protocol used provides for the
unambiguous association between the security attributes and
the user data received.

FDP_ITC.2.4 The TSF shall ensure that interpretation of the security
attributes of the imported user data is as intended by the
source of the user data.

FDP_ITC.2.5 The TSF shall enforce the following rules when importing
user data controlled under the SFP from outside the TSC:

● the keystore must be provided in a binary format
with the right attributes, equal to the format
used by Filkrypto to export keys,

©2007 Tutus Data AB Page 25 of 52

Security Target

● the keys must correctly be unwrapped out of
then encrypted keystore,

● the keyfiles must be correctly encrypted and
integrity protected by Filkrypto using the right
attributes and providing the right format,

● the keys itself must be provided in XML-format,
that is expected for keys generated by Filkrypto
with the right attributes provided.

Application Note: The attributes are algorithms, key lengths, number of bytes used
for salt and the number of iteration.

The attributes associated with standard keys are, e.g., the associated algorithms used
for encryption and integrity protection and the keyID which is an 128-bit key
identifier.

Form keys are imported into the application manually, the integrity check while
importing the form keys is not regarded as security relevant. Therefore no
requirement is provided. Nevertheless form keys use as attributes only the keyID
which is a 5 character identification code. These ASCII values are decoded in the first
bytes of the keyID the rest is set to zero.

5.1.3 Class FMT - Security Management

5.1.3.1 FMT_MSA.1 - Management of security attributes

FMT_MSA.1.1 The TSF shall enforce the keystore access control SFP to
restrict the ability to modify the security attributes keystore
password to any user who knows the actual password.

Application Note: The TOE is not aware of any user roles but controls the access
to the keystore via a password. The TOE is assumed to operate on a single user
machine with only one user having access to the TOE.

5.1.3.2 FMT_MSA.2 - Secure security attributes

FMT_MSA.2.1 The TSF shall ensure that only secure values are accepted for
security attributes.

Application Note: Only keys with a key length of 256 bits and with algorithm
attributes of cryptographic algorithms supported by the TOE are generated and used
by the TOE.

5.1.3.3 FMT_MSA.3 - Static attribute initialisation

FMT_MSA.3.1 The TSF shall enforce the keystore access control SFP to
provide no default values for security attributes that are used
to enforce the SFP.

FMT_MSA.3.2 The TSF shall allow any user who knows the keystore
password to specify alternative initial values to override the
default values when an object or information is created.

Application Note: There are no default values for keystore passwords; the user has
to choose a password himself when creating a keystore and/or starting the
application the first time.

©2007 Tutus Data AB Page 26 of 52

Security Target

5.1.3.4 FMT_SMF.1 - Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following
security management functions:

● generate key (only standard keys)

● delete key

● delete keystore

● change keystore password

● export keys (only standard keys)

● import keys

Application Note: All management functions except delete keystore requires the
user to present the password of the default keystore.

5.2 TOE Security Assurance Requirements
The target assurance components for this TOE are those for EAL3 as specified in
Part 3 of the CC. The following table provides an overview of the assurance
components that form the assurance level for the TOE.

Assurance class Assurance components

Configuration
management

ACM_CAP.3 Authorisation controls

ACM_SCP.1 TOE CM coverage

Delivery and
operation

ADO_DEL.1 Delivery procedures

ADO_IGS.1 Installation, generation, and start-up procedures

Development ADV_FSP.1 Informal functional specification

ADV_HLD.2 Security enforcing high-level design

ADV_RCR.1 Informal correspondence demonstration

Guidance and
Documentation

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Life cycle ALC_DVS.1 Identification of security measures

Tests ATE_COV.2 Analysis of coverage

ATE_DPT.1 Testing: high-level design

ATE_FUN.1 Functional testing

ATE_IND.2 Independent testing - sample

Vulnerability
assessment

AVA_MSU.1 Examination of guidance

AVA_SOF.1 Strength of TOE security function evaluation

AVA_VLA.1 Developer vulnerability analysis

Table 5: Security Assurance Components

©2007 Tutus Data AB Page 27 of 52

Security Target

6 TOE Summary Specification

The TOE summary specification provides a complete high-level definition of the
security functions and assurance measures of the TOE and their relationship to the
security functional and assurance requirements of this ST.

The TOE summary specification identifies the security functions that the TOE
implements to meet the requirements defined in chapter 5 of the security target.

A SOF claims is made, for the SF.CHECK_INTEGRITY. For this security function
SOF-high is claimed.

6.1 TOE Security Functions
This chapter describes the IT security functions of the TOE and their relation to the
security functional requirements which they are supposed to meet.

A mapping of security functions against requirements is provided in clause 8.3 of the
rationale part.

6.1.1 SF.KEYGEN - Key generation

The Keys used for encryption and decryption of data files are generated. These are
symmetric AES keys of the length 256 bits. The keys are generated by the random
number generator (PRNG) of the TSAlib (via FMSSL). Further keys for the keyed
hash function to detect loss of integrity of the respective encryption keys - the
HMAC-SHA256 keys - are generated with the same secret PRNG in a separate run.
The seeding for the PRNG is done by a mechanism provided by Tutus but approved
by TSA.

All information regarding the encryption key and it's associated HMAC key is present
in a XML key file which contains in addition to the key data, e.g. as well a key
identifier and the encryption format used. In the key data field both keys, the
encryption key and the associated HMAC key are presented. The keys are BASE64
encoded.

6.1.2 SF.KEYDER - Key derivation

The Keys used for encryption and decryption of key files as well as the respective
HMAC-keys are derived from passwords. For this purpose PBKDF2 in PKCS#5 as
described in [RFC 2898] is used with 16 bytes salt and currently 8192 iterations. The
key derivation function applies to a pseudo random number function corresponding
to the HMAC message authentication code based on the SHA-1 hash function
(HMAC-SHA1). The key derived is of the length of 512 bits. The first 256 bit are
used for the encryption key and the last 256 bit for the associated HMAC-Key.

6.1.3 SF.FILE_CRYPT - File encryption / decryption

Data files as well as the key files are encrypted and decrypted using the symmetric
AES algorithm in CBC mode with a 256-bit key.

All information regarding the encrypted data file is present in a XML file which
contains in addition to the encrypted data, e.g. as well the key identifier of the key
used for encryption for selecting the right key from the keystore when decrypting the
file, the time for encryption, and the original file name.

In contrast to the data files, the encrypted key files are stored as binary files. They are

©2007 Tutus Data AB Page 28 of 52

Security Target

called as well encrypted keystores.

The format of the encrypted data in both cases is based on a modified IPsec ESP
[RFC 2406] packet format. First 16 bytes random date followed by the “Payload Date
Field” (encrypted data) of variable length padded up to a block length of 128 bit.
Concatenated with the integrity check value of 32 bytes presented in the
“Authentication Data Field”. This integrity check value is calculated as described in
SF.CREATE_HMAC over all former fields.

In the case of data files the encrypted data is in addition BASE64 encoded before
included in the XML file. This applies not to the encrypted data in the case of key
files.

The keys for encryption and decryption are either taken from the default keystore in
the case of data files or derived from a given password (SF.KEYDER) in the case of
key files. See as well SF.CHECK_INTEGRITY.

6.1.4 SF.CREATE_HMAC

For purpose of integrity checks, an HMAC with SHA-256 (HMAC-SHA256) is
computed according to [RFC 2104] over the 16 bytes random data and the padded
encryption data of the ESP packet. The file format is described in SF.FILE_CRYPT
above. Therefore the Hash-function uses the 256 bit key provided in the respective
last 256 bit of the respective key file data (BASE64 decoded), which is used for
encryption and generates a 256 bit hash value which is concatenated to the ESP
packet fields described above in the “Authentication Data field”.

6.1.5 SF.CHECK_INTEGRITY

The first step is to validate that the file is encrypted with Filkrypto and that the
required keys are available.

In the case of data files the XML-structure of the given file is parsed and it is
checked if the key referenced in the keyID-field of the XML file is available in the
default keystore. In the case of key files (default key files as well as user generated key
files) SF.KEYDER is performed with the password given by the user (key unwrap
password) to derive the required key.

Afterwards the integrity check is implemented. The HMAC is validated. Therefore
the HMAC-SHA256 is calculated over the ESP packet minus the “Authentication
Data field” (last 32 bytes) and compared with the value provided as Integrity Check
Value in the “Authentication Data field”. In both cases the last 256-bit are taken as
HMAC-key either from the referenced key in the keystore or from the derived key.

Only if SF.CHECK_INTEGRITY is successful, decryption according to
SF.FILE_CRYPT is performed with the first 256-bits of the corresponding key.

For this security function SOF-high is claimed for the mechanism implementing the
verification of keyed check sums. This is done in accordance with the strength of
function claim for the corresponding security functional requirement.

6.1.6 SF.DIST_KEYFILE

Before standard keys, stored in a XML file, described in SF.KEYGEN, are exported
out of the application they are encapsulated in an encrypted keyfile using the
modified IPsec ESP format which is described in SF.FILE_CRYPT. This includes as
well the calculation of an value to perform integrity checks as described in

©2007 Tutus Data AB Page 29 of 52

Security Target

SF.CREATE_HMAC. The key to encrypt the keyfile is derived as described in
SF.KEYDER from a password which has to be chosen by the user (key unwrap
password) first.

The encrypted data is stored in a binary file called the keystore/keyfile of a special
format together with additional information concerning the algorithm used for key
derivation and its parameters, e.g. the number of bytes used for salt and the number
of iterations. This binary file is an ordinary file which can be e.g. stored on removable
media or send via e-mail, due to exchange it with another Filkrypto user, who has a as
well a instance of the application running.

Before a Filkrypto user who receives an encrypted keyfile is able to import the keys
into his default keystore he has to unwrap the keys out of the encrypted keystore by
using the correct key unwrap password which is assigned to the keystore. If the
decryption with the derived key from the password is successful (thus includes as well
the integrity check as described in SF.CHECK_INTEGRITY before decryption) and
the format of the presented keyfile complies to the Filkrypto format (see
SF.KEYGEN), the keys are stored in the default keyfile for further use. See as well
SF.MANAGE.

6.1.7 SF.MANAGE

The TOE allows the user to perform the following management functions:

● generate key (only standard keys)

● delete key

● delete keystore

● change keystore password

● export keys (only standard keys)

● import keys

All management functions except the function deleting the keystore requires the user
to present the correct password of the default keystore. The default keystore can be
deleted before the password is given and SF.CHECK_INTEGRITY, SF.KEYDER
and SF.FILE_CRYPT (keystore decryption) is performed.

For export of keys, the keys are placed in a new keystore and a key unwrap password
must be assigned by the user. For import of keys, the key unwrap password of the
imported keystore must be entered by the user. See SF.KEYDIS. For default
keystores the user is called to enter a password running Filkrypto the first time.

For changing the keystore password (default keystore) the user is called to enter the
current password first.

In contrast to standard keys which are generated by the TOE, “form keys” are
generated elsewhere and then imported into the application by entering a code
manually from a form received. The code is a key label and an ASCII coded bit string
representing 256 bit key data and concatenated with an integrity check value – the
first 64 bit of the SHA-1 value calculated over the key label and 256 bit key. When
importing the form key the application checks the integrity of the form key by
calculating the SHA-1 over the given key label and 256 bit key data for the form key
and compares the first 64 bit of the calculated value with the given integrity check
value. “Form keys” are only imported when the integrity check is valid. This “form
key check” is not considered to be a security function because it is only provided to

©2007 Tutus Data AB Page 30 of 52

Security Target

detect failures while entering the “form key” from the form, assumed to be received
in a secure manner out of band. This addresses only availability aspects.

6.1.8 SF.CLEAR

Keys can be properly destroyed when stored in memory and on files. In memory,
they are overwritten with zeroes and on files, they are overwritten with random data
using Bulk PRNG which is based on an algorithm owned and approved by TSA.

6.2 TOE Assurance Measures
This chapter gives information about the measures the developer has taken to achieve
the desired EAL3 assurance level. Because the TOE security assurance requirements
are exclusively based on the [CC] assurance components, we only provide a reference
to the documents that show that the assurance requirements are met (see the [CEM]
application note to ASE_TSS.1-1).

SAR Assurance Measure

ACM_CAP.3 AM.CAP:
The configuration management tool CVS is used to manage the
configuration items of the TOE. The manual of the CVS tool and the
procedures for using it are documented in separate documents. The TOE is
referenced by unique version numbers and is labeled with its reference.
Documentation is provided as part of the Filkrypto configuration
management documentation. The CM tool is used to provide automated
support for generating the TOE from its implementation representation as
well as measures for authorized changes to configuration items. It provides
unique identification of each configuration item.

ACM_SCP.1 AM.SCP:
The CM system, as documented above, tracks the TOE implementation
representation, design documentation, test documentation, user
documentation, administrator documentation and CM documentation.
Therefore all evaluation evidence is under the control of the CM system.

ADO_DEL.1 AM.DEL:
The procedures for delivery of the TOE to the user can be found in the
document Filkrypto delivery procedures, providing details how packaging
and delivery is performed and how the integrity of the TOE can be
maintained when delivered to the customer.

ADO_IGS.1 AM.USR:
Since this is a product that can be installed by the end user, necessary
steps for the secure installation, generation and start-up of the TOE are
documented in the user documentation.

ADV_FSP.1 AM.FSP:
The developer provides the functional specification together with a security
enforcing high-level design in the Filkrypto design documentation, covering
both the functional specification and the high-level design descriptions. This
documentation will also describe the design from a security point of view in
external visible security interfaces.

ADV_HLD.2 AM.HLD:
The security enforcing high-level design will be provided in the Filkrypto
design documentation, as described above in AM.FSP. This documentation
will also describe the design from a security point of view in terms of
subsystems.

©2007 Tutus Data AB Page 31 of 52

Security Target

SAR Assurance Measure

ADV_RCR.1 AM.RCR:
An informal correspondence analysis between the security target TOE
summary specification, the functional specification and high-level design is
given in the separate design document that specifically addresses the
correspondence between the different levels of design descriptions.

AGD_ADM.1 AM.USR:
The developer provides the administrator guidance together with the user
guidance in the Filkrypto users guide, due to the fact that an explicit
administrator role is not existing. This document will among other describe
the security features of the product and how to use them in secure way and
any assumptions for using them in a secure way.

AGD_USR.1 AM.USR:
The user guidance is provided in the document Filkrypto user guide as
identified above.

ALC_DVS.1 AM.DVS:
Development security documentation can be found documented in the
description of the Filkrypto development environment”. It documents the
security aspects in the development environment along with the
development processes for the life-cycle definition/model, and the
documentation of the development tools.

ATE_COV.2 AM.TST:
An analysis of the test coverage and depth of testing is provided together
with the test documentation in the test documentation that is describing the
test plans, procedures including a documentation of the performed
vulnerability analysis.

ATE_DPT.1 AM.TST: see above

ATE_FUN.1 AM.TST: see above
Testing will be performed on the platforms as defined by the ST. Test results
are documented such that the testing can be repeated.

ATE_IND.2 AM.IND:
Independent testing will be performed by the evaluation facility.
The TOE and an equivalent set of resources are provided to the evaluation
facility in a manner suitable for testing.

AVA_MSU.1 AM.VLA:
The misuse analysis, checking the guidance documentation, is documented
as part of the Filkrypto vulnerability analysis.

AVA_SOF.1 AM.VLA:
The TOE includes one mechanism having a strength of TOE security
function claim. For this mechanism, a strength of TOE security function
rationale is provided in chapter 8.2.4 of this Security Target. The strength of
function analysis is documented as part of the Filkrypto vulnerability
analysis.

AVA_VLA.1 AM.VLA:
The vulnerability analysis done by the developer is documented in the
Filkrypto vulnerability analysis.

Table 6: TOE Assurance Measures

©2007 Tutus Data AB Page 32 of 52

Security Target

7 PP Claims

This Security Target does not claim conformance with any Protection Profile.

©2007 Tutus Data AB Page 33 of 52

Security Target

8 Rationale

The rationale section demonstrates how the security objectives of the TOE are met
and how objectives, threats and security functions relate to each other. The rationale
section will identify which security functions contribute to which objectives and
which threats are countered by the individual security functions.

8.1 Security Objectives Rationale

8.1.1 Security Objective Coverage

The following tables provide a mapping of security objectives to the environment
defined by the threats, policies and assumptions, illustrating that each security
objective covers at least one threat and that each threat is countered by at least one
objective, assumption or policy.

T.
TA

M
P

E
R

T.
D

IS
C

LO
S

E

A
.K

E
Y

D
IS

A
.F

O
R

M
K

E
Y

D
IS

A
.S

IN
G

LE

A
.P

H
YS

IC
A

L

A
.U

S
E

R

A
.C

O
N

N
E

C
T

P.
E

R
A

S
U

R
E

P.
E

M
E

R
G

E
N

C
Y

P.
A

LG
O

R
IT

H
M

O.TAMPER X
O.DISCLOSE X
O.ERASURE X
O.EMERGENCY X
O.ALGORITHM X
OE.KEYDIS X X X
OE.FORMKEYDIS X X X
OE.SINGLE X
OE.PHYSICAL X
OE.USER X X X
OE.CONNECT X

Table 7: Objectives related to threats, assumptions and policies

8.1.2 Security Objectives Sufficiency

The following rationale provides justification that the security objectives are suitable
to counter each individual threat and that each security objective tracing back to a
threat, when achieved, actually contributes to the removal, diminishing or mitigation
of that threat:

©2007 Tutus Data AB Page 34 of 52

Security Target

Threat Is addressed by

T.DISCLOSE O.DISCLOSE (existence of mechanism to protect confidentiality itself)
requires the TOE to provide mechanism of high quality to protect the
confidentiality of the file's content while transferring it over any unprotected
communication channel. OE.KEYDIS and OE.FORMKEY requires in
addition that the TOE only uses keys for encryption / decryption of high
quality (e.g. exclusion of weak keys and providing a sufficient key length to
protect against successful brute-force key search or against attacks
together with methods of cryptanalysis). T.DISCLOSE is diminished by
reducing the likelihood of a launched attack being successful; greater
expertise and greater resources are needed from the attacker to perform
attacks based on cryptanalysis.
Further OE.KEYDIS and OE.FORMKEY are requiring that the keys used
for encryption / decryption are distributed and managed in a way that only
authorized parties receive the keys used for encryption / decryption.
T.DISCLOSE is diminished since restricting potential attackers in
opportunities to decrypt the keystore. Also OE.KEYDIS and OE.FORMKEY
are requiring the keys not to be disclosed to unauthorized users. Thus and
OE.USER requiring that users to be trustworthy and well trained restricts
the opportunity of unauthorized users possessing the right keys as well.

T.DISCLOSE is diminished by O.DISCLOSE together with OE.KEYDIS or
OE.FORMKEY and OE.USER.

T.TAMPER O.TEMPER (existence of mechanism to detect integrity violations itself)
requires the TOE to provide mechanism of high quality to detect integrity
violations of the file's content while transferring it over any unprotected
communication channel. OE.KEYDIS and OE.FORMKEY requires in
addition that the TOE only uses keys for integrity checks of high quality.
T.TEMPER is diminished by reducing the likelihood of a launched attack
being successful; greater expertise and greater resources are needed from
the attacker to perform attacks based on cryptanalysis.
Further OE.KEYDIS and OE.FORMKEY are requiring the key used for
integrity protection distributed and managed in a way that only authorized
parties receive the keys. T.TEMPER is diminished since restricting potential
attackers in opportunities to decrypt the keystore and get access to the key
used for validating the integrity of transmitted files. Also OE.KEYDIS and
OE.FORMKEY are requiring the key used for integrity checks not to be
disclosed to unauthorized users. Thus and OE.USER requiring users to be
trustworthy and well trained restricts the opportunity of unauthorized users
possessing the right key.

T.TEMPER is diminished by O.TEMPER together with OE.KEYDIS or
OE.FORMKEY and OE.USER.

Table 8: Sufficiency of objectives countering threats

The following rationale provides justification that the security objectives for the
environment are suitable to cover each individual assumption, that each security
objective for the environment that traces back to an assumption about the
environment of use of the TOE, when achieved, actually contributes to the
environment achieving consistency with the assumption.

©2007 Tutus Data AB Page 35 of 52

Security Target

Assumption Is fulfilled by

A.KEYDIS:
“It is assumed that keys used for
encryption/decryption and as well as the
associated keys used for integrity checks are
of high quality and are not disclosed to
unauthorized users. The keys are assumed to
be distributed only to those parties who are
authorized to use them in order to encrypt
and decrypt files.”

OE.KEYDIS require hat keys used for
encryption/decryption as well as the keys used
for integrity checks must be of high quality and
must not be disclosed to unauthorized users.
OE.KEYDIS also requires that the keys must be
distributed only to those parties who are
authorized to use them in order to encrypt and
decrypt files.

Therefore OE.KEYDIS is only a restatement of
A.KEYDIS i.e. OE.KEYDIS fulfils exactly the
assumption A.KEYDIS.

A.FORMKEYDIS:
“Form keys are assumed to be distributed
out of band from the generating party in a
secure manner, therefore they are assumed
to be not disclosed and tampered during
distribution. Otherwise the same
assumptions apply to form keys as to keys
generated in Filkrypto as described in
A.KEYDIS. They are of high quality and not
disclosed to unauthorized users.”

OE.FORMKEY requires that the form keys must
be distributed from the generating party in a
secure manner. Therefore it is required that they
must not be disclosed and tampered during
distribution. Otherwise it is required by
OE.FORMKEY that the same requirements must
be ensured to form keys as to keys generated in
Filkrypto as described in OE.KEYDIS, i.e. they
must be of high quality and must not disclosed to
unauthorized users.

Therefore OE.FORMKEY is only a restatement of
A.FORMKEY; i.e. OE.FORMKEY fulfils exactly
the assumption A.FORMKEY.

A.SINGLE:
“The TOE runs on a single user machine with
access protected by the TOE environment;
i.e. only authorised users of the TOE
environment may access the TOE. This
includes access control provided by the
operating system or equivalent and
protection against malware.”

OE.SINGLE requires that the TOE must be run
on a single user machine with access to the TOE
protected by the TOE environment; i.e., only
authorised users of the TOE environment have
access to the TOE. This includes access control
provided by the operating system or equivalent
and protection against malware.

Therefore OE.SINGLE is only a restatement of
A.SINGLE; i.e. OE.SINGLE fulfils exactly the
assumption A.SINGLE.

A.PHYSICAL:
“The TOE is operated in a physically secure
and well managed environment.”

OE.PHYSICAL requires that the TOE must be
run and therefore operated n a physically secure
and well managed environment.

Therefore OE.PHYSICAL is merely a restatement
of A.PHYSICAL; i.e. OE.PHYSICAL fulfils the
assumption A.PHYSICAL.

A.USER:
“The TOE user is trustworthy and trained to
manage and perform encryption of classified
information in accordance with any existing
security policies and information
classification policies. This means especially
that he knows how to classify information
and how to deal with, e.g., encrypting all files
containing sensitive information with the
appropriate key before exporting the file out
of the TOE and/or its TOE environment.”

OE.USER requires that the TOE User is
trustworthy and trained to perform all actions in
accordance with any existing security policies
and information classification policies.

OE.USER is merely a restatement of A.USER
where the explanation of performing actions in
accordance with any existing security policies
and information classification policies is not given
again because this has to be be clear to the
reader. Therefore OE.USER fulfils the
assumption A.USER.

©2007 Tutus Data AB Page 36 of 52

Security Target

Assumption Is fulfilled by

A.CONNECT:
“The single user PC on which the TOE is
running is not connected directly to an
untrusted network. This means that the PC is
either assumed not to be connected to any
networks or it is connected to a trusted
network which is protected against attacks,
so that no undocumented security critical
side effects on the security functions of the
TOE, which is resided in the PC, are
assumed coming from this network.”

OE.CONNECT requires that the single user PC
on which the TOE is running must not be
connected directly to an untrusted network. This
means that the PC must either not be connected
to any networks or it must be connected to a
trusted network, which is protected against
attacks, so that no undocumented security critical
side effects on the security functions of the TOE
are coming from this network.

Therefore OE.CONNECT is merely a
restatement of A.CONNECT; i.e. OE.CONNECT
fulfils the assumption A.CONNECT.

Table 9: Sufficiency of objectives meeting assumptions

The following rationale provides justification hat the security objectives are suitable
to cover each individual organizational security policy, that each security objective
that traces back to an OSP, when achieved, actually contributes to the implementation
of the OSP, and that if all security objectives that trace back to an OSP are achieved,
the OSP is implemented:

OSP Is addressed by

P.ERASURE:
“Individual encryption keys shall be deleted
upon the request of the authorized user.”

O.ERASURE requires that individual encryption
keys must be deleted upon the request of the
authorized user.

Therefore O.ERASURE implements exactly the
policy P.ERASURE.

P.EMERGENCY:
“All encryption keys contained in the default
keystore shall be deleted in case of
emergency. “

O.EMERGENCY requires that all encryption
keys contained in the default keystore must be
deleted in case of emergency.

Therefore O.EMERGENCY implements exactly
he policy P.EMERGENCY.

P.ALGORITHM:
“The TOE shall only allow the use of
approved encryption algorithms and key
lengths.”

O.ALGORITHM requires that only approved
encryption algorithms and key lengths must be
used.

Therefore O.ALGORITHM implements exactly
the policy P.ALGORITHM.

Table 10: Sufficiency of objectives meeting OSPs

8.2 Security Requirements Rationale

8.2.1 Security Requirements Coverage

The following tables provide a mapping of the relationships of security functional
requirements to objectives, illustrating that each security requirement covers at least
one objective and that each objective is covered by at least one security requirement.

©2007 Tutus Data AB Page 37 of 52

Security Target

O
.T

A
M

P
E

R

O
.D

IS
C

LO
S

E

O
.E

R
A

S
U

R
E

O
.E

M
E

R
G

E
N

C
Y

O
.A

LG
O

R
IT

H
M

FCS_CKM.1(a) X X
FCS_CKM.1(b) X (X)
FCS_CKM.2 X X
FCS_CKM.4 X X
FCS_COP.1(a) X X
FCS_COP.1(b) (X) X
FCS_COP.1(c) X X
FCS_COP.1(d) X X
FDP_ACC.1 X X X
FDP_ACF.1 X X X
FDP_ETC.2 X X X
FDP_ITC.2 X (X) X
FMT_MSA.1 (X) (X) (X)
FMT_MSA.2 X X X
FMT_MSA.3 X
FMT_SMF.1 X X X X

Table 11: TOE Security objectives meeting SFRs

The crosses in brackets apply to availability aspects. See the rational in 8.2.2.

8.2.2 Functional Security Requirements Sufficiency

Objective Is fulfilled by the SFRs

O.TAMPER The mechanisms to detect loss of integrity of the information included
in a transmitted file is achieved by the cryptographic operations
FCS_COP.1(d) together with FCS_COP.1(c). On the sender side the
checksum is calculated (FCS_COP.1(c)) first, before it could be
validated on the receiver side (FCS_COP.1(d)) where the properly
detection of potential integrity violation takes place.

The mechanisms are based on keyed hash functions, therefore some
supporting requirements regarding keys are needed. Hash keys are
generated (FCS_CKM.1(a)) on the sender side, exported out of the
TOE (FDP_ETC.2 together with FDP_ACC.1 and FDP_ACF.1) and
imported on the receiver side (FDP_ITC.2 together with FDP_ACC.1
and FDP_ACF.1) in a secure way into receivers TOE. The hash key
used for keystore checksum validation on the receiver side is derived
from a password which has to be assigned first to the keystore during
creation on the sender side FCS_CKM.1(b) is needed. With
FMT_MSA.1 only users how know the password could change it
(availability of keys for integrity checks).

For Form keys imported manually no requirement is provided. For
keystores the same cryptographic operations as for data files are
used.

The distribution itself is supported by FCS_CKM.2 demanding
keystores of a special format.

FMT_MSA.2 ensures that only keyed checksum functions and key
length are generated and used that are supported by the TOE.

FMT_SMF.1 provides the specific management functions for key
generation.

©2007 Tutus Data AB Page 38 of 52

Security Target

Objective Is fulfilled by the SFRs

O.DISCLOSE The mechanism to protect files during transmission against
confidentiality violation is achieved by the cryptographic operation
FCS_COP.1(a) ensuring, that the files encrypted such that the content
is confidentiality protected and that only parties who know the right
encryption key could decrypt the file. The cryptographic operation
FCS_COP.1(b) providing the file decryption on the receivers site is
strictly spoken not needed to achieve integrity protection but
implemented to provide access to the encrypted information to those
who are authorized (availability).

These mechanisms are using keys, therefore supporting requirements
regarding keys are needed. Encryption keys are generated
(FCS_CKM.1(a)) on the sender side, exported out of the TOE
(FDP_ETC.2 together with FDP_ACC.1 and FDP_ACF.1) and
imported on the receiver side (availability: FDP_ITC.2 together with
FDP_ACC.1 and FDP_ACF.1) in a secure way into receivers TOE.
The encryption key used for keystore decryption on the receiver side is
derived from a password which has to be assigned first to the
keystore during creation on the sender side. FCS_CKM.1(b) is
needed. With FMT_MSA.1 only users how know the password could
change it (availability of keys).

For Form keys imported manually no requirement is provided. For
keystores the same cryptographic operations as for data files are
used.

The distribution itself is supported by FCS_CKM.2 demanding
keystores of a special format.

FMT_MSA.2 ensure that only the approved algorithms for
encryption/decryption and key length are generated and used that are
supported by the TOE.

FMT_SMF.1 provides the specific management functions for key
generation.

O.ERASURE FDP_ACC.1 and FDP_ACF.1 ensures that keys are only available to
those users possessing the right password for the keystore.

FCS_CKM.4 ensures that individual encryption keys are deleted, keys
in memory are overwritten with zeroes, and stored keyfiles are
overwritten with random data.

With FMT_MSA.1 only users how know the password could change it
(availability of keys to erase).

FMT_SMF.1 provides the specific management functions for key
erasure.

O.EMERGENCY FCS_CKM.4 ensures that the default keystore is deleted, keys in
memory are overwritten with zeroes, and the stored default keyfile is
overwritten with random data.

FMT_SMF.1 provides the specific management functions for erasing
all keys.

©2007 Tutus Data AB Page 39 of 52

Security Target

Objective Is fulfilled by the SFRs

O.ALGORITHM The key generation and derivation requirement achieves that only
approved key generation and derivation algorithms with a specified
key size are allowed (FCS_CKM.1(a) / FCS_CKM.1(b)). Further only
approved algorithms with specified key sizes are allowed for
cryptographic operations in the cryptographic operation requirements
(FCS_COP.1(a) – FCS_COP.1(d)). These algorithms could not be
managed by the user (see FMT_SMF.1 – no management function
exists) they are fixed. Further only keystores could be deleted by
authorized users knowing the password (FMT_MSA.1) there exists no
function to change the attributes of the keys and the keys itself.

FDP_ETC.2 ensures that keys exported are only for the approved
encryption algorithms and key length.

FDP_ITC.2 ensures that imported keys are for the approved
encryption algorithms and key length.

FMT_MSA..2 ensures that only the approved algorithms for encryption
and decryption as well as key length are accepted by the TOE.

FMT_MSA.3 ensures that no insecure algorithms and keys are in the
keystore unless they have been generated or exported.

Thus leads to the fact that only approved encryption algorithms and
key length are allowed and used by the TOE.

Table 12: TOE Security Objectives and the Rationale for Mapping to the SFRs

As stated in the tables above, every objective is addressed by at least one security
functional requirement and every SFR is necessitated to cover at least one objective.
By showing that the stated security objectives are met, we are able to demonstrate the
suitability and sufficiency of the chosen SFRs.

8.2.3 Rationale of Selected Assurance Level

The assurance level EAL3 has been chosen as appropriate for an application that is
encrypting files in a secure and well managed environment. The attacker is also
assumed only to attack the data exported or imported into the TOE and not the
TOE itself, thereby limiting the opportunity of an attacker. For these reasons EAL3
is considered a sufficient level of assurance.

8.2.4 Rationale of SOF

This Security Target claims an overall SOF rating of SOF-high. This claim is made
for FCS_COP.1 (d); the HMAC with SHA-256 used to validate keyed hash sums for
detection of loss of integrity and authenticity of origin is claimed to be SOF-high.
This claim of SOF-high is consistent with the security objectives and the assumption
of the intended use.

8.2.5 Security Requirements Dependency Analysis

Following the Common Criteria and choosing security requirements to be met by a
TOE, certain dependencies on other security requirements may arise. The following
section shows whether these dependencies are resolved and, in case they are not,
gives reasons for that.

©2007 Tutus Data AB Page 40 of 52

Security Target

8.2.5.1 Security Functional Requirements Dependency Analysis

If there are alternative requirements to resolve a dependency the valid ones are put in
bold letters. Unresolved dependencies are put in italic bold letters.

Component Dependencies/comment Resolved

FCS_CKM.1(a) [FCS_CKM.2 Cryptographic key distribution,
or
FCS_COP.1 Cryptographic operation]
FCS_CKM.4 Cryptographic key destruction
FMT_MSA.2 Secure security attributes

Yes

Yes: FCS_COP.1(a),(b),(c),(d)
Yes
Yes

FCS_CKM.1(b) [FCS_CKM.2 Cryptographic key distribution,
or
FCS_COP.1 Cryptographic operation]
FCS_CKM.4 Cryptographic key destruction
FMT_MSA.2 Secure security attributes

Yes

Yes: FCS_COP.1(a), (b)
Yes
Yes

FCS_CKM.2 [FDP_ITC.1 Import of user data without security attributes, or
FDP_ITC.2 Import of user data with security attributes, or

FCS_CKM.1 Cryptographic key generation]
FCS_CKM.4 Cryptographic key destruction
FMT_MSA.2 Secure security attributes

--

Yes

Note: form keys cannot be
exported; only standard keys can
be distributed, they can as well be
imported before

FCS_CKM.1(a)
Yes
Yes

FCS_CKM.4 [FDP_ITC.1 Import of user data without security attributes, or
FDP_ITC.2 Import of user data with security attributes, or
FCS_CKM.1 Cryptographic key generation]
FMT_MSA.2 Secure security attributes

Yes

Yes

Yes: FCS_CKM.1(a), (b)
Yes

FCS_COP.1(a) [FDP_ITC.1 Import of user data without security attributes, or
FDP_ITC.2 Import of user data with security attributes,

or

FCS_CKM.1 Cryptographic key generation]
FCS_CKM.4 Cryptographic key destruction
FMT_MSA.2 Secure security attributes

--

Yes

FDP_ITC.2 and FCS_CKM.1
apply as keys may be self-
generated or imported

Yes: FCS_CKM.1(a), (b)
Yes
Yes

FCS_COP.1(b) [FDP_ITC.1 Import of user data without security attributes, or
FDP_ITC.2 Import of user data with security attributes, or
FCS_CKM.1 Cryptographic key generation]
FCS_CKM.4 Cryptographic key destruction
FMT_MSA.2 Secure security attributes

--

Yes

Yes: FCS_CKM.1(a), (b)
Yes
Yes

FCS_COP.1(c) [FDP_ITC.1 Import of user data without security attributes, or
FDP_ITC.2 Import of user data with security attributes,
or
FCS_CKM.1 Cryptographic key generation]
FCS_CKM.4 Cryptographic key destruction
FMT_MSA.2 Secure security attributes

--

--

Yes: FCS_CKM.1(a),(b)
Yes
Yes

FCS_COP.1(d) [FDP_ITC.1 Import of user data without security attributes, or
FDP_ITC.2 Import of user data with security attributes, or
FCS_CKM.1 Cryptographic key generation]

FCS_CKM.4 Cryptographic key destruction
FMT_MSA.2 Secure security attributes

--

Yes

Yes FCS_CKM.1(a),(b) in addition
in the case of key files

©2007 Tutus Data AB Page 41 of 52

Security Target

Component Dependencies/comment Resolved

Yes
Yes

FDP_ACC.1 FDP_ACF.1 Security attribute based access control Yes FDP_ACF.1

FDP_ACF.1 FDP_ACC.1 Subset access control
FMT_MSA.3 Static attribute initialisation

Yes FDP_ACC.1
Yes

FDP_ETC.2 [FDP_ACC.1 Subset access control, or
FDP_IFC.1 Subset information flow control]

Yes FDP_ACC.1
--

FDP_ITC.2 [FDP_ACC.1 Subset access control,
or
FDP_IFC.1 Subset information flow control]
[FTP_ITC.1 Inter-TSF trusted channel, or
FTP_TRP.1 Trusted path]

FPT_TDC.1 Inter-TSF basic TSF data consistency

Yes FDP_ACC.1

--
No: Either a trusted
communication channel between
the TSF and another trusted IT
products or a trusted
communication path between
users and the TSF are required,
i.e. secure communication
ensuring confidentiality, integrity
and authenticity protection, is
required.
The dependencies are not
satisfied, however confidentiality,
integrity and authenticity is for the
security attributes are satisfied.
Confidentiality is satisfied for
standard keys by FCS_COP.1(a)
and integrity protection as well as
authenticity protection by
FCS_COP.1(c) and (d). In the
case of form keys no such
protection is needed by the TOE,
as they are no subject to any
disclosure or tampering.

No: this dependency is not
satisfied by FPT_TDC.1. The
confidentiality, integrity and
authenticity of keys and key
attributes imported is satisfied by
the protection used for user data
as described above.
For user date the integrity and
therefore the consistency is
protected by requiring
FCS_COP.1(c) and (d).

FMT_MSA.1 [FDP_ACC.1 Subset access control,
or
FDP_IFC.1 Subset information flow control]
FMT_SMR.1 Security roles

FMT_SMF.1 Specification of Management Functions

Yes

--
No: The TOE does not know about
security roles; it relies on the TOE
environment for user access
control, but there are no specific
requirements on the TOE
environment to maintain separate
roles.

Yes

FMT_MSA.2 ADV_SPM.1 Informal TOE security policy model

[FDP_ACC.1 Subset access control,
or
FDP_IFC.1 Subset information flow control]
FMT_MSA.1 Management of security attributes
FMT_SMR.1 Security roles

No: ADV_SPM.1 would apply to
the TOE environment as the user
handling and user access control
is done there (see also
A.SINGLE).

Yes

--
Yes
No: The TOE does not know about

©2007 Tutus Data AB Page 42 of 52

Security Target

Component Dependencies/comment Resolved

security roles; it relies on the TOE
environment for user access
control, but there are no specific
requirements on the TOE
environment to maintain separate
roles.

FMT_MSA.3 FMT_MSA.1Management of security attributes
FMT_SMR.1 Security roles

Yes
No: The TOE does not know about
security roles; it relies on the TOE
environment for user access
control, but there are no specific
requirements on the TOE
environment to maintain separate
roles.

FMT_SMF.1 No dependencies Yes

Table 13: Security Functional Requirements Dependencies for the TOE

8.2.5.2 Security Assurance Dependencies Analysis

The assurance level selected within this TOE is EAL3. Since the dependency analysis
for EAL3 has been performed by the authors of the CC and as all dependent
assurance components have been included, all dependencies of the assurance
components within this Security Target are resolved.

8.2.5.3 Rationale of unresolved dependencies

See table 11 for the rationale on unresolved dependencies.

8.2.6 Internal Consistency and Mutual Support of SFRs

Section 8.3.2 has already demonstrated how the IT security requirements work
together to implement the individual objectives for the TOE and the IT
environment. This section will elaborate on the internal consistency and mutual
support of the IT security requirements.

The TOE’s purpose is to enable users to exchange electronic documents securely
over unprotected communication paths by ensuring confidentiality with encryption
and the detection of loss of integrity by using keyed Hash-functions.

Therefore cryptographic keys have to be generated first (FCS_CKM.1(a)). They are
stored on the hard disk within a password protected default keyfile (keystore).

When using Filkrypto for the first time an initial password for the keystore has to be
set by the user. From this password the key for encryption/decryption of the
keystore is derived as well as the HMAC key (FCS_CKM.1(b)). In main memory a
keylist is created which is initially empty. Every time the user updates that list by
adding or deleting keys the keyfile on the hard disk is actualized. Therefore the keylist
is encrypted with the derived encryption key (FCS_COP.1(a)) and stored in the same
format (modified IPsec ESP format) used for distribution (FCS_CKM.2) of keyfiles.
In the last 32 bytes of the ESP the HMAC-SHA256 is stored which is computed
over the 16 bytes random data and the padded encryption data of the ESP packet by
using the 256 bit HMAC key derived from the password and the SHA-256 calculating
a 256 bit hash value (FCS_COP.1 (c)) for detection of loss of integrity and
authenticity of origin.

Every further time the user starts Filkrypto he has to decrypt the default keystore
first. Therefore he has to enter the actual password of the keystore, the keys are

©2007 Tutus Data AB Page 43 of 52

Security Target

derived (FCS_CKM.1(b)) and the checksum is validated (FCS_COP.1(d) by
calculating the HMAC-SHA256 over the ESP packet without the “Authentication
Data field” (last 32 bytes) and comparing this with the value provided as Integrity
Check Value in the “Authentication Data field”. Only if this succeeds the keyfile is
decrypted (FCS_COP.1(a)) and stored in main memory. If this fails either the
password is incorrect or the integrity of the encrypted keyfile is violated in both cases
the user could not access the keyfile. If the keylist is available in main memory the
user could perform some management functions (FMT_SMF.1.). He can generate
new keys FCS_CKM.1(a)), delete keys and keystores (FCS_CKM.4). In case of an
emergency the default keystore could be erased. Thus could be done before the
password is given and the keylist is present in main memory or when the default
keystore is already open. The keystore passwords could be changed.

Self generated standard keys (FCS_CKM.1) could be exported out of Filkrypto in
order to distribute them to other users. This is done in a password encrypted
keystore. The creation as well as the access to the keystore is regulated by a access
control SFP called keystore access control policy (FDP_ACC.1 and FDP_ACF.1).
This policy is enforced while exporting keys respectively keyfiles (FDP_ETC.2) as
well as during importing them (FDP_ITC.2).

After the user assigns a password for the keyfile (FDP_ACF.1), he wants to export,
the respective key is derived by using sing FCS_CKM.1(b) for the key derivation from
password. FDP_ETC regulates then that the keys are only exported in a special
format encrypted keyfile format. Therefore they must be encrypted and integrity
protected first. The format is the same as for the default keystore for encapsulation
of keys (FCS_CKM.2). The different fields of the packet are computed in the same
way as described above for the default keyfile using FCS_COP.1(a) for encryption
and FCS_COP.1(c) for checksum generation.

After exporting the keyfile it can be sent over untrusted communication channels to
users who are authorized to use the keys (FCS_CKM.2). After exchanging the
password with this user in a secure manner - not part of the application - the user
could import the keyfile. Therefore the keystore access control policy must be
enforced when importing the keys (FDP_ITC.2). Thus allows only users having the
right password to access the keystore. FDP_ITC.2 regulates in addition that only with
Filkrypto encrypted and integrity protected keyfiles of the special Filkrypto format
with the expected attributes are imported and added to the keyfile of the default
keystore. For accessing the keys in the keystore the same SFRs have to be carried out
as for accessing the default keystore but with the given exchanged password.

Form keys could not be added to keyfiles for distribution. They could only be
imported manually from a form given in clear (FDP_ITC.2) and ASCII-coded with a
checksum concatenated for input failure detection which is not regarded as security
relevant as described in section 2.

Data Files could be encrypted and decrypted with all keys available in the keylist
using FCS_COP.1(a) and FCS_COP.1(b).

As shown above there exist no conflicts between different requirements. Further they
are consistent in defining a proper set of demands on the functionality the TOE is
supposed to offer.

8.3 TOE Summary Specification Rationale
The TOE IT security functions work together to satisfy the security functional

©2007 Tutus Data AB Page 44 of 52

Security Target

requirements. Below a justification is presented for each SFR, how the related security
functions meet the requirements, and as well for the sum of SARs.

By examining the TOE summary specification and this justification carefully, it
becomes clear that the security functions are a well defined set combined to build a
sound application for file encryption and therefore to meet the requirements defined
in this ST.

The following tables provide a mapping between security functions and security
functional requirements, as well as assurance measures and security assurance
requirements.

S
F.

K
E

YG
E

N

S
F.

K
E

Y
D

E
R

S
F.

_F
IL

E
_C

R
Y

P
T

S
P.

C
R

E
AT

E
_H

M
A

C

S
F.

C
H

E
C

K
_I

N
TE

G
R

IT
Y

S
F.

D
IS

T_
K

E
Y

FI
LE

S
F.

M
A

N
A

G
E

S
F.

C
LE

A
R

FCS_CKM.1(a) X
FCS_CKM.1(b) X
FCS_CKM.2 X
FCS_CKM.4 X X
FCS_COP.1(a) X
FCS_COP.1(b) X
FCS_COP.1(c) X
FCS_COP.1(d) X
FDP_ACC.1 X
FDP_ACF.1 X
FDP_ETC.2 X X
FDP_ITC.2 X X
FMT_MSA.1 X
FMT_MSA.2 X X X X X
FMT_MSA.3 X
FMT_SMF.1 X

Table 14: TOE Security Functions meeting SFRs and Vice Versa

8.3.1 Security Functions Justification

The following table shows that the IT security functions (SF) as specified in the TOE
Summary Specification meet all the security functional requirements (SFR) for the
TOE and work together to satisfy the TOE security functional requirements.

SFR Security Functions (TOE Summary Specification)

FCS_CKM.1(a) The requirement for key generation (standard key) is satisfied by the
security function SF.KEYGEN, which will generate all encryption keys
AES-keys and in a special run of the same function the HMAC-Keys, that
are not imported into the TOE as form keys.

FCS_CKM.1(b) The requirement for key generation (derivation from password) is satisfied
by the security function SF.KEYDER, which will derive a 512 bit key from a
given password implemented as described in [PKCS#5] and [RFC2898],
where the first 256 bit are used for the encryption key (AES-key) and the
last 256 bit are used for the corresponding HMAC-key.

FCS_CKM.2 The requirement for key distribution is satisfied by the security function
SF.DIST_KEYFILE, defining the file format for encapsulating (wrapping)
keys before exporting them out of the TOE.

©2007 Tutus Data AB Page 45 of 52

Security Target

SFR Security Functions (TOE Summary Specification)

FCS_CKM.4 The requirement for key destruction is satisfied by the key destruction
function SF.CLEAR in combination with the management function
SF.MANAGE. SF.CLEAR is responsible for proper destroying the keys
either in memory by overwriting with zeros or on files by overwriting with
random data using a TSA owned algorithm. The fact that in the case of an
emergency, all encryption keys in the default keystore are deleted
immediately by implementing SF.CLEAR overwriting the default key file
with random data without having access to the keystore (password not
needed) is defined in SF.MANAGE.

FCS_COP.1(a) The requirement for file encryption is satisfied by the security function
SF.FILE_CRYPT, which specifies that AES in CBC mode with a 256 bit
key is used for encryption, conform to [RFC 2406].

FCS_COP.1(b) The requirement for file decryption is satisfied as well by the security
function SF.FILE_CRYPT, which specifies that AES in CBC mode with a
256 bit key is used for decryption, conform to [RFC 2406].

FCS_COP.1(c) The requirement for generation of keyed checksums is satisfied by the
security function SF.CREAT_HMAC, which calculate a HMAC-SHA256
(HMAC using a 256 bit SHA key) according to [RFC 2104].

FCS_COP.1(d) The requirement for validation of keyed checksums is satisfied by the
security function SF.CHECK_INTEGRITY, which calculates HMAC-
SHA256 (HMAC using a 256 bit SHA key) according to [RFC 2104] over
the payload and compares this value with the value provided by
SF.CREAT_HMAC.

FDP_ACC.1 The requirement for access control is satisfied by the management
function SF.MANAGE, implementing the access control SFP for all users
accessing the keystore.

FDP_ACF.1 The requirement for access control rules is satisfied by the management
function SF.MANAGE, implementing that users must present the correct
default keystore password before performing the management functions,
except the function deleting the default keystore, this can be performed
without entering password as a emergency erase functionality.

FDP_ETC.2 The requirement for export of keys is satisfied by SF.DIST_KEYFILE in
combination with the management function SF.MANAGE.
SF.DIST_KEYFILE controls the export of keys, i.e. only keys can be
exported when they are encapsulated in an encrypted key file ESP.
SF.MANAGE together with SF.DIST_KEYFILE define how the export is
implemented in detail – in a password encrypted keystore where the user
is ask to assign a password first..

FDP_ITC.2 The requirement for import of keys is satisfied as well by
SF.DIST_KEYFILE in combination with the management function
SF.MANAGE. SF.DIST_KEYFILE controls the import of standard keys, i.e.
only keys can be imported when they are encapsulated in an encrypted
key file using IPsec ESP. SF.MANAGE together with SF.DISTKEYFILE
define how the import is implemented in detail – in a password encrypted
keystore , where the user is ask to enter the correct password to unwrap
the keys.
Further it is defined in SF_MANAGE how the import of form keys is
implemented as required as well in FDP_ITC.2.

FMT_MSA.1 The requirement for authorization of password changes for the keystore is
implemented in SF.MANAGE, allowing password changes only to those
users who know the current password of the keystore.

©2007 Tutus Data AB Page 46 of 52

Security Target

SFR Security Functions (TOE Summary Specification)

FMT_MSA.2 The requirement for secure security attributes is satisfied by SF.KEYGEN
together with SF.CREATE_HMAC and SF.FILECRYPT as well with
SF.DIST_KEYFILE. SF.KEYGEN ensures that only secure values are
generated and SF.DIST_KEYFILE ensures that these secure values are
encapsulated in a
sec ESP using SF.FILCRYPT and SF.CREATE_HMAC and distributed in
this format to the receiver. SF.CHECK_INTEGRITY and SF.FILECRYPT
would fail on the receivers side if insecure attributes are used. Therefore
only secure attributes could be used within Filkrypto.

FMT_MSA.3 The requirement for static attribute installation is fulfilled by SF.MANAGE,
by not providing any default attributes that could be insecure.

FMT_SMF.1 The requirement for the TSF to provide management functions is satisfied
by SF.MANAGE implementing exact the same management functions.

Table 15: Security Function Rationale

8.3.2 Mutual Support of Security Functions

The IT security functions provided by the TOE work together to satisfy the TOE
security functional requirements defined in this Security Target. The tight relationship
between the defined requirements and the fulfilment of these requirements by
security functions, as illustrated above in section 8.3.1, provides no room for the
introduction of potential security weaknesses not identified in this document.

8.3.3 Assurance Measures Rationale

The TOE summary specification in section 6.2 includes a justification that the TOE
security assurance requirements are met by the assurance measures.

8.3.4 Minimum Strength of Function Rationale

For the security function SF_CHECK_INTEGRITY, SOF-high is claimed for the
mechanism implementing the verification of the keyed checksum HMAC SHA-256.
This is done in accordance with the strength of function claim for the corresponding
security functional requirement for checksum validation FCS_COP.1 (d).

No claims are made about the strength of function for any cryptographic algorithms.
This is covered by the cryptographic verification performed by the government
agency TSA.

8.4 PP Claims Rationale
No claims to any Protection Profile are made.

©2007 Tutus Data AB Page 47 of 52

Security Target

9 Appendix

A.1 Abbreviations
CCMB Common Criteria Maintenance Board

EAL Evaluation Assurance Level

ESP Encapsulating Security Payload

FMSSL Försvarsmaktens SSL

GUI Graphical User Interface

IT Information Technology

PP Protection Profile

RFC Request for comments

SF Security Function

SFP Security Function Policy

SOF Strength of Function

ST Security Target

TOE Target of Evaluation

TSA Totalförsvarets signalskyddssamordning

TSC TSF Scope of Control

TSF TOE Security Functions

TSFI TSF Interface

TSP TOE Security Policy

A.2 Glossary
Assets Information or resources to be protected by the

countermeasures of a TOE.

Assignment The specification of an identified parameter in a
component.

Assurance Grounds for confidence that an entity meets its
security objectives.

Attack potential The perceived potential for success of an attack,
should an attack be launched, expressed in terms of an
attacker’s expertise, resources and motivation.

Augmentation The addition of one or more assurance component(s)
from Part3 to an EAL or assurance package.

Authentication data Information used to verify the claimed identity of a
user.

Authorised user A user who may, in accordance with the TSP, perform
an operation.

Class A grouping of families that share a common focus.

©2007 Tutus Data AB Page 48 of 52

Security Target

Component The smallest selectable set of elements that may be
included in a PP, an ST, or a package.

Connectivity The property of the TOE which allows interaction
with IT entities external to the TOE. This includes
exchange of data by wire or by wireless means, over
any distance, in any environment or configuration.

Dependency A relationship between requirements such that the
requirement that is depended upon must normally be
satisfied for the other requirements to be able to meet
their objectives.

Element An indivisible security requirement.

Evaluation Assessment of a PP, an ST or a TOE, against defined
criteria.

Evaluation Assurance A package consisting of assurance components from
Level (EAL) Part 3 that represents a point on the CC predefined

assurance scale.

Evaluation authority A body that implements the CC for a specific
community by means of an evaluation scheme and
thereby sets the standards and monitors the quality of
evaluations conducted by bodies within that
community.

Evaluation scheme The administrative and regulatory framework under
which the CC is applied by an evaluation authority
within a specific community.

Extension The addition to an ST or PP of functional
requirements not contained in Part2 and/ or assurance
requirements not contained in Part 3 of the CC.

External IT entity Any IT product or system, untrusted or trusted,
outside of the TOE that interacts with the TOE.

Family A grouping of components that share security
objectives but may differ in emphasis or rigour.

Formal Expressed in a restricted syntax language with defined
semantics based on well-established mathematical
concepts.

Human user Any person who interacts with the TOE.

Identity A representation (e.g., a string) uniquely identifying an
authorised user, which can either be the full or
abbreviated name of that user or a pseudonym.

Informal Expressed in natural language.

Internal communication A communication channel between separated parts of
channel TOE.

Internal TOE transfer Communicating data between separated parts of the
TOE.

Inter-TSF transfers Communicating data between the TOE and the

©2007 Tutus Data AB Page 49 of 52

Security Target

security functions of other trusted IT products.

Iteration The use of a component more than once with varying
operations.

Object An entity within the TSC that contains or receives
information and upon which subjects perform
operations.

Organisational security One or more security rules, procedures, practices, or
policies guidelines imposed by an organisation upon its

operations.

Package A reusable set of either functional or assurance
components (e.g., an EAL), combined together to
satisfy a set of identified security objectives.

Product A package of IT software, firmware and/or hardware,
providing functionality designed for use or
incorporation within a multiplicity of systems.

Protection Profile (PP) An implementation-independent set of security
requirements for a category of TOEs that meet
specific consumer needs.

Reference monitor The concept of an abstract machine that enforces
TOE access control policies.

Reference validation An implementation of the reference monitor concept
mechanism that possesses the following properties: it is

tamperproof, always invoked, and simple enough to be
subjected to thorough analysis and testing.

Refinement The addition of details to a component.

Role A predefined set of rules establishing the allowed
interactions between a user and the TOE.

Secret Information that must be known only to authorised
users and/or the TSF in order to enforce a specific
SFP.

Security attribute Information associated with subjects, users and/or
objects that is used for the enforcement of the TSP.

Security Function (SF) A part or parts of the TOE that have to be relied upon
for enforcing a closely related subset of the rules from
the TSP.

Security Function Policy The security policy enforced by an SF.
(SFP)

Security objective A statement of intent to counter identified threats
and/or satisfy identified organisation security policies
and assumptions.

Security Target (ST) A set of security requirements and specifications to be
used as the basis for evaluation of an identified TOE.

Selection The specification of one or more items from a list in a
component.

©2007 Tutus Data AB Page 50 of 52

Security Target

Semiformal Expressed in a restricted syntax language with defined
semantics.

Strength of Function A qualification of a TOE security function expressing
(SOF) the minimum efforts assumed necessary to defeat its

expected security behaviour by directly attacking its
underlying security mechanisms.

SOF-basic A level of the TOE strength of function where
analysis shows that the function provides adequate
protection against casual breach of TOE security by
attackers possessing a low attack potential.

SOF-medium A level of the TOE strength of function where
analysis shows that the function provides adequate
protection against straightforward or intentional
breach of TOE security by attackers possessing a
moderate attack potential.

SOF-high A level of the TOE strength of function where
analysis shows that the function provides adequate
protection against deliberately planned or organised
breach of TOE security by attackers possessing a high
attack potential.

Subject An entity within the TSC that causes operations to be
performed.

System A specific IT installation, with a particular purpose and
operational environment.

Target of Evaluation An IT product or system and its associated
(TOE) administrator and user guidance documentation that is

the subject of an evaluation.

TOE resource Anything usable or consumable in the TOE.

TOE Security Functions A set consisting of all hardware, software, and
(TSF) firmware of the TOE that must be relied upon for the

correct enforcement of the TSP.

TOE Security Functions A set of interfaces, whether interactive (man-machine
Interface (TSFI) interface) or programmatic (application programming

interface), through which TOE resources are accessed,
mediated by the TSF, or information is obtained from
the TSF.

TOE Security Policy A set of rules that regulate how assets are managed,
(TSP) protected and distributed within a TOE.

TOE security policy A structured representation of the security policy to be
model enforced by the TOE.

Transfers outside TSF Communicating data to entities not under control of
control the TSF.

Trusted channel A means by which a TSF and a remote trusted IT
product can communicate with necessary confidence
to support the TSP.

©2007 Tutus Data AB Page 51 of 52

Security Target

Trusted path A means by which a user and a TSF can communicate
with necessary confidence to support the TSP.

TSF data Data created by and for the TOE, that might affect the
operation of the TOE.

TSF Scope of Control The set of interactions that can occur with or within a
(TSC) TOE and are subject to the rules of the TSP.

User Any entity (human user or external IT entity) outside
the TOE that interacts with the TOE.

User data Data created by and for the user, that does not affect
the operation of the TSF.

©2007 Tutus Data AB Page 52 of 52

	Document History
	1 	Introduction
	1.1 	ST Identification
	1.2 	ST Overview
	1.3 	CC Conformance Claim
	1.4 	Strength of Function Claim
	1.5 	ST Content and Organisation
	1.6 	Related Standards and Documents

	2 	TOE Description
	2.1 	Introduction
	2.2 	TOE Definition Scope
	2.3 	Supported Platforms and Environment
	2.4 	Installation
	2.5 	Configurations
	2.6 	TOE Operation and Use
	2.6.1 	Intended Use
	2.6.2 	Security Roles
	2.6.3 	Security Functionality

	2.7 	TOE Environment and Physical Protection

	3 	TOE Security Environment
	3.1 	Secure Usage Assumptions
	3.2 	Threats
	3.2.1 	Assets and Agents
	3.2.2 	Threats addressed by the TOE

	3.3 	Organisational Security Policy

	4 	Security Objectives
	4.1 	Security Objectives for the TOE
	4.2 	Security Objectives for the IT and non-IT Environment

	5 	IT Security Requirements
	5.1 	TOE Security Functional Requirements
	5.1.1 	Class FCS - Cryptographic Support
	5.1.1.1 	FCS_CKM.1(a) - Cryptographic key generation (standard key)
	5.1.1.2 	FCS_CKM.1(b) - Cryptographic key generation (derivation from password)
	5.1.1.3 	FCS_CKM.2 - Cryptographic key distribution
	5.1.1.4 	FCS_CKM.4 - Cryptographic key destruction
	5.1.1.5 	FCS_COP.1(a) - Cryptographic operation (file encryption)
	5.1.1.6 	FCS_COP.1(b) - Cryptographic operation (file decryption)
	5.1.1.7 	FCS_COP.1(c) - Cryptographic operation (keyed checksum generation)
	5.1.1.8 	FCS_COP.1(d) - Cryptographic operation (keyed checksum validation)

	5.1.2 	CLASS FDP - User Data Protection
	5.1.2.1 	FDP_ACC.1 - Subset access control (keystore access)
	5.1.2.2	FDP_ACF.1 - Security attribute based access control (keystore access)
	5.1.2.3 	FDP_ETC.2 - Export of user data with security attributes
	5.1.2.4 	FDP_ITC.2 - Import of user data with security attributes

	5.1.3 	Class FMT - Security Management
	5.1.3.1 	FMT_MSA.1 - Management of security attributes
	5.1.3.2 	FMT_MSA.2 - Secure security attributes
	5.1.3.3 	FMT_MSA.3 - Static attribute initialisation
	5.1.3.4 	FMT_SMF.1 - Specification of Management Functions

	5.2 	TOE Security Assurance Requirements

	6 	TOE Summary Specification
	6.1 	TOE Security Functions
	6.1.1 	SF.KEYGEN - Key generation
	6.1.2 	SF.KEYDER - Key derivation
	6.1.3 	SF.FILE_CRYPT - File encryption / decryption
	6.1.4 	SF.CREATE_HMAC
	6.1.5 	SF.CHECK_INTEGRITY
	6.1.6 	SF.DIST_KEYFILE
	6.1.7 	SF.MANAGE
	6.1.8 	SF.CLEAR

	6.2 	TOE Assurance Measures

	7 	PP Claims
	8 	Rationale
	8.1 	Security Objectives Rationale
	8.1.1 	Security Objective Coverage
	8.1.2 	Security Objectives Sufficiency

	8.2 	Security Requirements Rationale
	8.2.1 	Security Requirements Coverage
	8.2.2 	Functional Security Requirements Sufficiency
	8.2.3 	Rationale of Selected Assurance Level
	8.2.4 	Rationale of SOF
	8.2.5 	Security Requirements Dependency Analysis
	8.2.5.1 	Security Functional Requirements Dependency Analysis
	8.2.5.2 	Security Assurance Dependencies Analysis
	8.2.5.3 	Rationale of unresolved dependencies

	8.2.6 	Internal Consistency and Mutual Support of SFRs

	8.3 	TOE Summary Specification Rationale
	8.3.1 	Security Functions Justification
	8.3.2 	Mutual Support of Security Functions
	8.3.3 	Assurance Measures Rationale
	8.3.4 	Minimum Strength of Function Rationale

	8.4 	PP Claims Rationale

	9 	Appendix

