
Security Target for Oracle Linux 7.3

CSEC Certification ID: CSEC2017014

Version 1.4

Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA
Tel.: +1.650.506.7000
Copyright © 2019 by Oracle and atsec information security

Security Target for Oracle Linux 7.3

Trademarks
Oracle Linux and the Oracle logo are trademarks or registered trademarks of Oracle Corporation in
the United States, other countries, or both.

atsec is a trademark of atsec information security GmbH.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Intel, Xeon, and Pentium are trademarks of Intel Corporation in the United States, other countries,
or both.

Legal Notice
This document is provided AS IS with no express or implied warranties. Use the information in this
document at your own risk.

This document may be reproduced or distributed in any form without prior permission provided the
copyright notice is retained on all copies. Modified versions of this document may be freely
distributed provided that they are clearly identified as such, and this copyright is included intact.

Version 1.4 Classification: atsec public 3 of 82
 Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3

Table of contents
1 Introduction..9

1.1 Security Target Identification..9

1.2 TOE Identification..9

1.3 TOE Type..9

1.4 TOE Overview..9

1.4.1 Configurations Defined With this ST..9

1.4.2 Overview Description...9

1.4.3 Required Hardware and Software...9

1.4.4 Intended Method of Use..10

1.4.5 Major Security Features..11

1.5 TOE Description...11

1.5.1 Introduction...11

1.5.2 TOE Boundaries..11

1.6 Applied Technical Decisions...17

2 Conformance Claims..18

2.1 Conformance with CC parts 2 and 3...18

2.2 Conformance with Packages...18

2.3 Conformance with other Protection Profiles..18

3 Security Problem Definition...19

3.1 Threats...19

3.1.1 Assets..19

3.1.2 Threat Agents..19

3.1.3 Threats countered by the TOE..20

3.2 Organizational Security Policies...20

3.3 Assumptions..20

3.3.1 Physical aspects...20

3.3.2 Personnel aspects..20

4 Security Objectives...21

4.1 Security Objectives for the TOE...21

4.2 Security Objectives for the Operational Environment..21

4.3 Rationale for Security Objectives...22

4.3.1 Security Objectives coverage..22

4 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3

4.3.2 Security Objectives sufficiency..22

5 Extended Components Definition..24

6 Security Requirements..25

6.1 Security Functional Requirements..25

6.1.1 Cryptographic Support..25

6.1.2 User Data Protection...31

6.1.3 Security Management...31

6.1.4 Protection of the TSF..32

6.1.5 Audit Data Generation..33

6.1.6 Identification and Authentication..34

6.1.7 Trusted Path/Channel..35

6.1.8 Extended Package for Secure Shell..36

6.2 Rationale for Security Functional Requirements..37

6.3 Security Assurance Requirements..37

6.4 Rationale for Security Assurance Requirements..37

7 TOE Summary Specification..38

7.1 Cryptographic Support..38

7.1.1 Linux kernel crypto API..39

7.1.2 OpenSSL...39

7.1.3 Libgcrypt...40

7.1.4 Block Device Encryption Support..40

7.1.5 Self Tests...44

7.2 User Data Protection...44

7.2.1 Permission Bits...45

7.2.2 Access Control Lists (ACLs)..46

7.2.3 Special Permission..46

7.3 Protection of TSF Data...47

7.3.1 Stack Buffer Overflow Protection...47

7.3.2 Boot Process..47

7.3.3 Secure Boot Support...54

7.3.4 Trusted Installation and Update..55

7.4 Security Management...56

7.4.1 Privileges...56

Version 1.4 Classification: atsec public 5 of 82
 Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3

7.5 Audit Data Generation..57

7.5.1 Audit Functionality...57

7.5.2 Audit Trail...58

7.5.3 Audit Subsystem Implementation...59

7.6 Identification and Authentication..66

7.6.1 PAM-based identification and authentication mechanisms..66

7.6.2 Authentication Data Management...71

7.6.3 SSH Key-Based Authentication..72

7.6.4 Session Locking..72

7.6.5 X.509 Certificate Validation...72

7.7 Trusted Path / Channel..73

7.7.1 TLS Protocol...74

7.8 Secure Shell..74

7.8.1 OpenSSH Implementation Details..75

7.9 SFR to TSS References...78

8 Abbreviations..81

6 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3

Index of Tables

Table 1: Non-evaluated functionalities...14

Table 2: Coverage of security objectives for the TOE...22

Table 3: Coverage of security objectives for the TOE environment..22

Table 4: TOE threats sufficiency..23

Table 5: Assumptions sufficiency...23

Table 6: Management Functions...32

Table 7: LAF Audit Events...65

Table 8: X.509 Implementation Details..73

Table 9: SFR to TSS References..80

Illustration Index

 Figure 1: dm_crypt Device Mapper Target Operation..42

 Figure 2: Cryptsetup Operation...44

 Figure 3: Audit Framework...60

References
CC: Common Criteria for Information Technology Security Evaluation, Version 3.1 Revision 5,
April 2017

OSPP: Protection Profile for General Purpose Operating Systems, Version 4.1, 2016-03-09

SSH-EP: Extended Package for Secure Shell, Version 1.0, 2016-02-19

Version 1.4 Classification: atsec public 7 of 82
 Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3

Revision History

Version Date Author Changes

1.3 2019-01-29 Stephan Müller First public release

1.4 2019-02-27 Stephan Müller Add NIAP SSH TD references

8 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Introduction

1 Introduction

1.1 Security Target Identification

Title: Security Target for Oracle Linux 7.3

Version: 1.4

Status: atsec public

Publication Date: 2019-02-27

Author: Stephan Müller, atsec information security GmbH

Certification ID: CSEC2017014

CC-Version: 3.1 Revision 5

Keywords: Operating System, general-purpose Operating Systems

1.2 TOE Identification

The TOE is Oracle Linux 7.3.

Details can be found at the Oracle Linux product website.

1.3 TOE Type

The TOE type is a Linux-based general-purpose operating system.

1.4 TOE Overview

This security target documents the security characteristics of the Oracle Linux distribution
(abbreviated with OL throughout this document).

1.4.1 Configurations Defined With this ST

This security target documents the security characteristics of the Oracle Linux distribution.

1.4.2 Overview Description

Oracle Linux is a highly-configurable Linux-based operating system which has been developed to
provide a good level of security as required in commercial environments. It also meets all functional
requirements of the Operating System Protection Profile OSPP v4.1.

1.4.3 Required Hardware and Software

The following hardware / firmware allows the installation of the TOE:

• x86 64-bit Intel Xeon processors:

◦ Oracle Server X7-2

Version 1.4 Classification: atsec public 9 of 82
 Copyright © 2019 by Oracle and atsec

http://www.oracle.com/us/products/servers/x7-2-datasheet-3690005.pdf
https://www.oracle.com/linux/index.html

Introduction Security Target for Oracle Linux 7.3

1.4.4 Intended Method of Use

1.4.4.1 General-purpose Computing Environment

The TOE is a Linux-based multi-user multi-tasking operating system. The TOE may provide
services to several users at the same time. After successful login, the users have access to a general
computing environment, allowing the start-up of user applications, issuing user commands at shell
level, creating and accessing files. The TOE provides adequate mechanisms to separate the users
and protect their data. Privileged commands are restricted to administrative users.

The TOE is intended to operate in a networked environment with other instantiations of the TOE as
well as other well-behaved peer systems operating within the same management domain. All those
systems need to be configured in accordance with a defined common security policy.

It is assumed that responsibility for the safeguarding of the user data protected by the TOE can be
delegated to human users of the TOE if such users are allowed to log on and spawn processes on
their behalf. All user data is under the control of the TOE. The user data is stored in named objects,
and the TOE can associate a description of the access rights to that object with each named object.

The TOE enforces controls such that access to data objects can only take place in accordance with
the access restrictions placed on that object by its owner, and by administrative users. Ownership of
named objects may be transferred under the control of the access control policies implemented by
the TOE.

Discretionary access rights (e.g. read, write, execute) can be assigned to data objects with respect to
subjects identified with their UID, GID and supplemental GIDs. Once a subject is granted access to
an object, the content of that object may be used freely to influence other objects accessible to this
subject.

1.4.4.2 Operating Environment

The TOE permits one or more processors and attached peripheral and storage devices to be used by
multiple applications assigned to different UIDs to perform a variety of functions requiring
controlled shared access to the data stored on the system. With different UIDs proper access
restrictions to resources assigned to processes can be enforced using the access control mechanisms
provided by the TOE. Such installations and usage scenarios are typical for systems accessed by
processes or users local to, or with otherwise protected access to, the computer system.

Note: The TOE provides the platform for installing and running arbitrary services. These additional
services are not part of the TOE. The TOE is solely the operating system which provides the
runtime environment for such services.

All human users, if existent, as well as all services offered by Oracle Linux are assigned unique user
identifiers within the single host system that forms the TOE. This user identifier is used together
with the attributes assigned to the user identifier as the basis for access control decisions. Except for
virtual machine accesses, the TOE authenticates the claimed identity of the user before allowing the
user to perform any further actions. Services may be spawned by the TOE without the need for user-
interaction. The TOE internally maintains a set of identifiers associated with processes, which are
derived from the unique user identifier upon login of the user or from the configured user identifier
for a TOE-spawned service. Some of those identifiers may change during the execution of the
process according to a policy implemented by the TOE.

10 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Introduction

1.4.5 Major Security Features

The primary security features of the TOE are specified as part of section 1.5.2.2.

These primary security features are supported by domain separation and reference mediation, which
ensure that the features are always invoked and cannot be bypassed.

1.5 TOE Description

1.5.1 Introduction

Oracle Linux is a general purpose, multi-user, multi-tasking Linux based operating system. It
provides a platform for a variety of applications. In addition, virtual machines provide an execution
environment for a large number of different operating systems.

The Oracle Linux evaluation covers a potentially distributed network of systems running the
evaluated versions and configurations of Oracle Linux as well as other peer systems operating
within the same management domain. The hardware platforms selected for the evaluation consist of
machines which are available when the evaluation has completed and to remain available for a
substantial period of time afterwards.

The TOE Security Functions (TSF) consist of functions of Oracle Linux that run in kernel mode
plus a set of trusted processes. These are the functions that enforce the security policy as defined in
this Security Target. Tools and commands executed in user mode that are used by an administrative
user need also to be trusted to manage the system in a secure way. But as with other operating
system evaluations they are not considered to be part of this TSF.

The hardware, the BIOS firmware and potentially other firmware layers between the hardware and
the TOE are considered to be part of the TOE environment.

The TOE includes standard networking applications, including applications allowing access of the
TOE via cryptographically protected communication channels, such as SSH.

System administration tools include the standard command line tools. A graphical user interface for
system administration or any other operation is not included in the evaluated configuration.

The TOE environment also includes applications that are not evaluated, but are used as unprivileged
tools to access public system services. For example a network server using a port above 1024 may
be used as a normal application running without root privileges on top of the TOE. The additional
documentation specific for the evaluated configuration provides guidance how to set up such
applications on the TOE in a secure way.

1.5.2 TOE Boundaries

1.5.2.1 Physical

The Target of Evaluation is based on the following system software:

• Oracle Linux in the above mentioned version

The TOE and its documentation are supplied on ISO images distributed via the Oracle Linux web
site. The TOE includes a package holding the additional user and administrator documentation.

In addition to the installation media, the following documentation is provided:

Version 1.4 Classification: atsec public 11 of 82
 Copyright © 2019 by Oracle and atsec

Introduction Security Target for Oracle Linux 7.3

• Common Criteria Guide for Oracle Linux 7.3 version 1.0

• Manual pages for all applications, configuration files and system calls

The hardware applicable to the evaluated configuration is listed in section 1.4.3. The analysis of the
hardware capabilities as well as the firmware functionality is covered by this evaluation to the
extent that the following capabilities supporting the security functionality are analyzed and tested:

• Memory separation capability

• Unavailability of privileged processor states to untrusted user code (like the hypervisor state
or the SMM)

• Full testing of the security functionality on all listed hardware systems

1.5.2.2 Logical

The primary security features of the TOE are:

1.5.2.2.1 Auditing

The Lightweight Audit Framework (LAF) is designed to be an audit system making Linux
compliant with the requirements from Common Criteria. LAF is able to intercept all system calls as
well as retrieving audit log entries from privileged user space applications. The subsystem allows
configuring the events to be actually audited from the set of all events that are possible to be
audited.

1.5.2.2.2 Cryptographic support

The TOE provides cryptographically secured communication to allow remote entities to log into the
TOE. For interactive usage, the SSHv2 protocol is provided. The TOE provides the server side as
well as the client side applications. Using OpenSSH, password-based and public-key-based
authentication are allowed.

Furthermore, the TOE provides TLS-based communication channels for a cryptographically secured
communication with other remote entities. TLS is offered for the key negotiating aspect. The
implementations of TLS allow a certificate based authentication of the remote peer (the option for
pre-shared keys is disallowed in the evaluated configuration).

Also, the TOE provides confidentiality protected data storage using the device mapper target
dm_crypt. Using this device mapper target, the Linux operating system offers administrators and
users cryptographically protected block device storage space. With the help of a Password-Based
Key-Derivation Function version 2 (PBKDF2) implemented with the LUKS mechanism, a user-
provided passphrase protects the volume key which is the symmetric key for encrypting and
decrypting data stored on disk. Any data stored on the block devices protected by dm_crypt is
encrypted and cannot be decrypted unless the volume key for the block device is decrypted with the
passphrase processed by PBKDF2. With the device mapper mechanism, the TOE allows for
transparent encryption and decryption of data stored on block devices, such as hard disks.

1.5.2.2.3 Identification and Authentication

User identification and authentication in the TOE includes all forms of interactive login (e.g. using
the SSH protocol or log in at the local console) as well as identity changes through the su or sudo
command. These all rely on explicit authentication information provided interactively by a user.

12 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Introduction

The authentication security function allows password-based authentication. For SSH access, public-
key-based authentication is also supported.

Password quality enforcement mechanisms are offered by the TOE which are enforced at the time
when the password is changed.

Using X.509 certificates, users can also perform authentication.

1.5.2.2.4 Discretionary Access Control

DAC allows owners of named objects to control the access permissions to these objects. These
owners can permit or deny access for other users based on the configured permission settings. The
DAC mechanism is also used to ensure that untrusted users cannot tamper with the TOE
mechanisms.

In addition to the standard Unix-type permission bits for file system objects as well as IPC objects,
the TOE implements POSIX access control lists. These ACLs allow the specification of the access
to individual file system objects down to the granularity of a single user.

1.5.2.2.5 Security Management

The security management facilities provided by the TOE are usable by authorized users and/or
authorized administrators to modify the configuration of TSF.

1.5.2.2.6 Self Protection

The TOE implements self-protection mechanisms that protect the security mechanisms of the TOE
as well as software executed by the TOE. The following self-protection mechanisms are
implemented and enforced:

• Address Space Layout Randomization for user space code.

• Stack buffer overflow protection using stack canaries.

• Secure Boot ensuring that the boot chain up to and including the kernel together with the
boot image (initramfs) is not tampered with.

• Updates to the operating system are only installed after their signatures have been
successfully validated.

1.5.2.3 Additional Functions

The TOE provides many more functions and mechanisms. The evaluation ensures that all these
additional functions do not interfere with the above mentioned security mechanisms in the
evaluated configuration. The mechanisms given in the following list, however, may interfere with
the security functionality of the TOE and should be allowed in the evaluated configuration.
Therefore, the evaluation assesses the functionality to verify that the impact on the security
functionality at most adds further restrictions as outlined below.

• Virtualization support: The TOE offers full virtualization support allowing other operating
systems to execute on the TOE. The Linux kernel operates as a hypervisor and the
supporting software components like QEMU operate as unprivileged processes. Also the
guest operating system executes as an unprivileged application from the view-point of the
Linux kernel. The libvirt daemon is allowed to run with privileges of the root user to allow
management of the virtual machines.

Version 1.4 Classification: atsec public 13 of 82
 Copyright © 2019 by Oracle and atsec

Introduction Security Target for Oracle Linux 7.3

• Linux Container support: The TOE offers userspace virtualization support via Linux
Container. That virtualization support shall be allowed to be used such that it does not
interfere with the operation of the security functions. The evaluation ensures that the
constraints associated with the use of Linux Containers in the evaluated configuration guide
has no adverse impact on the security functionality. In addition, the libvirt daemon is
allowed to run with the privileges of the root user to allow management of Linux Containers
(note, Linux Containers are not referred to by the term containers used in the remainder of
this ST).

Additional mechanisms and functions that would interfere with the operation of the security
functions are disallowed in the evaluated configuration and the Evaluation Configuration Guide
provides instructions to the administrator on how to disable them. Note: TOE mechanism which
provide additional restrictions to the above claimed security functions are allowed in the evaluated
configuration. For example, the eCryptFS cryptographic file system provided with the TOE and
permitted in the evaluated configuration even though they have not been subject to this evaluation.
The eCryptFS provides further restrictions on, for example, the security function of discretionary
access control mechanism for file system objects and therefore cannot breach the security
functionality as the discretionary access control rules of the "lower" file system are still enforced.
The following table enumerates mechanisms that are provided with the TOE but which are excluded
from the evaluation:

Functions Exclusion discussion

eCryptFS eCryptFS are not allowed to be used in the evaluated configuration.
The encryption capability provided with this file system is therefore
unavailable to any user.

LSM Support The mandatory access control functionality offered by the Linux
Security Module (LSM) framework found in the Linux kernel is not
assessed by the evaluation and disabled in the evaluated
configuration. All LSM modules such as SELinux, AppArmor,
SMACK and others are not assessed as part of the evaluation. The
evaluated configuration enables aspects of the LSM though.

GSS-API Security
Mechanisms

The GSS-API is used to secure the connection between different
audit daemons. The security mechanisms used by the GSS-API,
however, is not part of the evaluation. Therefore, A.CONNECT
applies to the audit-related communication link.

Table 1: Non-evaluated functionalities

Note: Packages and mechanisms not covered with security claims and subsequent assessments
during the evaluation or disabling the respective functionality in the evaluated configuration result
from resource constraints during the evaluation as well as the restriction specified in the protection
profile but does not imply that the respective package or functionality is implemented insecurely.

1.5.2.4 Configurations

The evaluated configurations are defined as follows:

14 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Introduction

• The CC evaluated package set must be selected at install time in accordance with the
description provided in the Evaluated Configuration Guide and installed accordingly.

• The installation specified by the CC guide allows the installation of two different Linux
kernels: the Unbreakable Enterprise Kernel (UEK) as well as the derivative of the Red Hat
Enterprise Linux kernel. The administrator is free to choose which kernel is used to boot the
system as both kernels are allowed in the evaluated configuration.

• The TOE supports the use of IPv4 and IPv6, both are also supported in the evaluated
configuration. IPv6 conforms to the following RFCs:

◦ RFC 2460 specifying the basic IPv6 protocol<

◦ IPv6 source address selection as documented in RFC 3484 Linux implements several
new socket options (IPV6_RECVPKTINFO, IPV6_PKTINFO, IPV6_RECVHOPOPTS,
IPV6_HOPOPTS, IPV6_RECVDSTOPTS, IPV6_DSTOPTS, IPV6_RTHDRDSTOPTS,
IPV6_RECVRTHDR, IPV6_RTHDR, IPV6_RECVHOPOPTS, IPV6_HOPOPTS,
IPV6_{RECV,}TCLASS) and ancillary data in order to support advanced IPv6
applications including ping, traceroute, routing daemons and others. The following
section introduces Internet Protocol Version 6 (IPv6). For additional information about
referenced socket options and advanced IPv6 applications, see RFC 3542

◦ Transition from IPv4 to IPv6: dual stack, and configured tunneling according to RFC
4213.

• The default configuration for identification and authentication are the defined password-
based PAM modules as well as public-key based authentication for OpenSSH. Support for
other authentication options, e.g. smart card authentication, is not included in the evaluation
configuration.

• If the system console is used, it must be subject to the same physical protection as the TOE.

Deviations from the configurations and settings specified with the Evaluated Configuration Guide
are not permitted.

The TOE comprises a single system (and optional peripherals) running the TOE software listed.
Cluster configurations are not permitted in the evaluated configuration.

1.5.2.5 TOE Environment

Several TOE systems may be interlinked in a network, and individual networks may be joined by
bridges and/or routers, or by TOE systems which act as routers and/or gateways. Each of the TOE
systems implements its own security policy. The TOE does not include any synchronization
function for those policies. As a result a single user may have user accounts on each of those
systems with different UIDs, different roles, and other different attributes. (A synchronization
method may optionally be used, but it not part of the TOE. The administrator must ensure that the
synchronized UIDs to not conflict with the security policy applicable to the TOE.)

If other systems are connected to a network they need to be configured and managed by the same
authority using an appropriate security policy that does not conflict with the security policy of the
TOE. All links between this network and untrusted networks (e. g. the Internet) need to be protected
by appropriate measures such as carefully configured firewall systems that prohibit attacks from the
untrusted networks. Those protections are part of the TOE environment.

Version 1.4 Classification: atsec public 15 of 82
 Copyright © 2019 by Oracle and atsec

Introduction Security Target for Oracle Linux 7.3

1.5.2.6 Security Policy Model

The security policy for the TOE is defined by the security functional requirements in chapter 6. The
following is a list of the subjects and objects participating in the policy.

Subjects:

• Processes acting on behalf of a human user or technical entity.

Named objects:

• File system objects in the following allowed file systems:

◦ Ext4 - standard file system for general data

◦ XFS - standard file system for general data

◦ VFAT - special purpose file system for UEFI BIOS support mounted at /boot/efi

◦ iso9660 - ISO9660 file system for CD-ROM and DVD

◦ tmpfs - the temporary file system backed by RAM

◦ rootfs - the virtual root file system used temporarily during system boot

◦ procfs - process file system holding information about processes, general statistical data
and tunable kernel parameters

◦ sysfs - system-related file system covering general information about resources
maintained by the kernel including several tunable parameters for these resources

◦ devpts - pseudoterminal file system for allocating virtual TTYs on demand

◦ devtmpfs - temporary file system that allows the kernel to generate character or block
device nodes

◦ binfmt_misc - configuration interface allowing the assignment of executable file formats
with user space applications

◦ securityfs - interface for loadable security modules (LSM) to provide tunables and
configuration interfaces to user space

◦ cgroup - interface for configuring the control groups mechanism provided by the kernel

◦ debugfs - interface for accessing low-level kernel data

Please note that the TOE supports a number of additional virtual (i.e. without backing of
persistent storage) file systems which are only accessible to the TSF - they are not or cannot
be mounted. All above mentioned virtual file systems implement access decisions based
DAC attributes inferred from the underlying process’ DAC attributes. Additional restrictions
may apply for specific objects in this file system.

• Inter Process Communication (IPC) objects:

◦ Semaphores

◦ Shared memory

◦ Message queues

◦ Named pipes

16 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Introduction

◦ UNIX domain socket special files

◦ DBUS queues

• Network sockets (irrespective of their type - such as Internet sockets and netlink sockets)

• Storage device objects (covered by dm_crypt - note that such storage device objects may be
provided by either block devices or LVM devices)

• cron job queues maintained for each user

TSF data:

• TSF executable code

• Subject meta data - all data used for subjects except data which is not interpreted by the TSF
and does not implement parts of the TSF (this data is called user data)

• Named object meta data - all data used for the respective objects except data which is not
interpreted by the TSF and does not implement parts of the TSF (this data is called user
data)

• User accounts, including the security attributes defined by FIA_ATD.1

• Audit records

• Volume keys for dm_crypt block devices and passphrases protecting the session keys

User data:

• Non-TSF executable code used to drive the behavior of subjects

• Data not interpreted by TSF and stored or transmitted using named objects

• Any code executed within the virtual machine environment as well as any data stored in
resources assigned to virtual machines

1.6 Applied Technical Decisions

The ST claims compliance to the claimed protection profile and the extended packages. NIAP
issued the following technical decisions which are considered in this ST:

• 0332 – Support for RSA SHA2 host keys

• 0331 – SSH Rekey Testing

• 0305 – Handling of TLS connections with and without mutual authentication

• 0304 – Update to FCS_TLSC_EXT.1.2

• 0246 – Assurance Activity for FIA_UAU.5.2

• 0244 – FCS_TLSC_EXT - TLS Client Curves Allowed

• 0243 – SSH Key-Based Authentication

• 0240 – FCS_COP.1.(1) Platform provided crypto for encryption/decryption

• 0239 – Cryptographic Key Destruction in OS PP

• 0208 – Remote Users in OSPP

Version 1.4 Classification: atsec public 17 of 82
 Copyright © 2019 by Oracle and atsec

Introduction Security Target for Oracle Linux 7.3

• 0163 – Update to FCS_TLSC_EXT.1.1 Test 5.4 and FCS_TLSS_EXT.1.1 Test

• 0107 – FCS_CKM - ANSI X9.31-1998, Section 4.1.for Cryptographic Key Generation

• 0104 – FMT_SMF and FMT_MOF in OS PP

18 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Conformance Claims

2 Conformance Claims

2.1 Conformance with CC parts 2 and 3

This Security Target is CC Part 2 extended and CC Part 3 extended.

Common Citeria [CC] version 3.1 revision 5 is the basis for this conformance claim.

2.2 Conformance with Packages

This Security Target does not claim conformance with a package.

2.3 Conformance with other Protection Profiles

This Security Target claims exact conformance to:

• [OSPP]

• [SSH-EP]

Version 1.4 Classification: atsec public 19 of 82
 Copyright © 2019 by Oracle and atsec

Security Problem Definition Security Target for Oracle Linux 7.3

3 Security Problem Definition

3.1 Threats

Threats to be countered by the TOE are characterized by the combination of an asset being subject
to a threat, a threat agent and an adverse action.

3.1.1 Assets

Assets to be protected are:

• Persistent storage objects used to store user data and/or TSF data, where this data needs to
be protected from any of the following operations:

◦ Unauthorized read access

◦ Unauthorized modification

◦ Unauthorized deletion of the object

◦ Unauthorized creation of new objects

◦ Unauthorized management of object attributes

• Transient storage objects, including network data

• TSF functions and associated TSF data

• The resources managed by the TSF that are used to store the above-mentioned objects,
including the metadata needed to manage these objects.

3.1.2 Threat Agents

Threat agents are external entities that potentially may attack the TOE. They satisfy one or more of
the following criteria:

• External entities not authorized to access assets may attempt to access them either by
masquerading as an authorized entity or by attempting to use TSF services without proper
authorization.

• External entities authorized to access certain assets may attempt to access other assets they
are not authorized to either by misusing services they are allowed to use or by masquerading
as a different external entity.

• Untrusted subjects may attempt to access assets they are not authorized to either by
misusing services they are allowed to use or by masquerading as a different subject.

Threat agents are typically characterized by a number of factors, such as expertise, available
resources, and motivation, with motivation being linked directly to the value of the assets at stake.
The TOE protects against intentional and unintentional breach of TOE security by attackers
possessing a basic attack potential.

20 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Security Problem Definition

3.1.3 Threats countered by the TOE

T.NETWORK_ATTACK An attacker is positioned on a communications channel or elsewhere
on the network infrastructure. Attackers may engage in
communications with applications and services running on or part of
the OS with the intent of compromise. Engagement may consist of
altering existing legitimate communications.

T.NETWORK_EAVESDROP An attacker is positioned on a communications channel or
elsewhere on the network infrastructure. Attackers may monitor and
gain access to data exchanged between applications and services that
are running on or part of the OS.

T.LOCAL_ATTACK An attacker may compromise applications running on the OS. The
compromised application may provide maliciously formatted input to
the OS through a variety of channels including unprivileged system
calls and messaging via the file system.

T.LIMITED_PHYSICAL_ACCESS An attacker may attempt to access data on the OS while
having a limited amount of time with the physical device.

3.2 Organizational Security Policies

Organizational security policies are not defined.

3.3 Assumptions

The specific conditions below are assumed to exist in a PP-conformant TOE environment.

3.3.1 Physical aspects

A.PLATFORM The OS relies upon a trustworthy computing platform for its
execution. This underlying platform is out of scope of this PP.

3.3.2 Personnel aspects

A.PROPER_USER The user of the OS is not willfully negligent or hostile, and uses the
software in compliance with the applied enterprise security policy. At
the same time, malicious software could act as the user, so
requirements which confine malicious subjects are still in scope.

A.PROPER_ADMIN The administrator of the OS is not careless, willfully negligent or
hostile, and administers the OS within compliance of the applied
enterprise security policy.

Version 1.4 Classification: atsec public 21 of 82
 Copyright © 2019 by Oracle and atsec

Security Objectives Security Target for Oracle Linux 7.3

4 Security Objectives
The following sections describe the security objectives of the Operating System Protection Profile.

4.1 Security Objectives for the TOE

The following objectives are defined for the TOE.

O.ACCOUNTABILITY Conformant OSs ensure that information exists that allows
administrators to discover unintentional issues with the configuration
and operation of the operating system and discover its cause.
Gathering event information and immediately transmitting it to
another system can also enable incident response in the event of
system compromise.

O.INTEGRITY Conformant OSs ensure the integrity of their update packages. OSs
are seldom if ever shipped without errors, and the ability to deploy
patches and updates with integrity is critical to enterprise network
security. Conformant OSs provide execution environment-based
mitigations that increase the cost to attackers by adding complexity to
the task of compromising systems.

O.MANAGEMENT To facilitate management by users and the enterprise, conformant
OSes provide consistent and supported interfaces for their security-
relevant configuration and maintenance. This includes the deployment
of applications and application updates through the use of platform-
supported deployment mechanisms and formats, as well as providing
mechanisms for configuration and application execution control.

O.PROTECTED_STORAGE To address the issue of loss of confidentiality of credentials in the
event of loss of physical control of the storage medium, conformant
OSs provide data-at-rest protection for credentials. Conformant OSes
also provide access controls which allow users to keep their files
private from other users of the same system.

O.PROTECTED_COMMS To address both passive (eavesdropping) and active (packet
modification) network attack threats, conformant OSs provide
mechanisms to create trusted channels for CSP and sensitive data.
Both CSP and sensitive data should not be exposed outside of the
platform.

4.2 Security Objectives for the Operational Environment

The following objectives are to be met by the operational environment of the TOE.

OE.PLATFORM The OS relies on being installed on trusted hardware.

OE.PROPER_USER The user of the OS is not willfully negligent or hostile, and uses the
software within compliance of the applied enterprise security policy.
Standard user accounts are provisioned in accordance with the least
privilege model. Users requiring higher levels of access should have a
separate account dedicated for that use.

22 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Security Objectives

OE.PROPER_ADMIN The administrator of the OS is not careless, willfully negligent or
hostile, and administers the OS within compliance of the applied
enterprise security policy.

4.3 Rationale for Security Objectives

The following tables provide a mapping of security objectives to the environment defined by the
threats, policies and assumptions, illustrating that each security objective covers at least one threat,
assumption or policy and that each threat, assumption or policy is covered by at least one security
objective.

4.3.1 Security Objectives coverage

Objectives SPD coverage

O.ACCOUNTABILITY (Unmapped by [OSPP])

O.INTEGRITY T.NETWORK_ATTACK, T.LOCAL_ATTACK

O.MANAGEMENT T.NETWORK_ATTACK, T.NETWORK_EAVESDROP

O.PROTECTED_STORAGE T.LIMITED_PHYSICAL_ACCESS

O.PROTECTED_COMMS T.NETWORK_ATTACK, T.NETWORK_EAVESDROP

Table 2: Coverage of security objectives for the TOE

Objectives SPD coverage

OE.PLATFORM A.PLATFORM

OE.PROPER_USER A.PROPER_USER

OE.PROPER_ADMIN A.PROPER_ADMIN

Table 3: Coverage of security objectives for the TOE environment

4.3.2 Security Objectives sufficiency

Threats Security Objectives

T.NETWORK_ATTACK The threat T.NETWORK_ATTACK is countered by
O.PROTECTED_COMMS as this provides for integrity of
transmitted data.

The threat T.NETWORK_ATTACK is countered by
O.INTEGRITY as this provides for integrity of software that is
installed onto the system from the network.

The threat T.NETWORK_ATTACK is countered by
O.MANAGEMENT as this provides for the ability to configure the
OS to defend against network attack.

Version 1.4 Classification: atsec public 23 of 82
 Copyright © 2019 by Oracle and atsec

Security Objectives Security Target for Oracle Linux 7.3

Threats Security Objectives

T.NETWORK_EAVESDRO
P

The threat T.NETWORK_EAVESDROP is countered by
O.PROTECTED_COMMS as this provides for confidentiality of
transmitted data.

The threat T.NETWORK_EAVESDROP is countered by
O.MANAGEMENT as this provides for the ability to configure the
OS to protect the confidentiality of its transmitted data.

T.LOCAL_ATTACK The objective O.INTEGRITY protects against the use of
mechanisms that weaken the TOE with regard to attack by other
software on the platform.

T.LIMITED_PHYSICAL_A
CCESS

The objective O.PROTECTED_STORAGE protects against
unauthorized attempts to access physical storage used by the TOE.

Table 4: TOE threats sufficiency

Assumptions Security Objectives

A.PLATFORM The operational environment objective OE.PLATFORM is realized
through A.PLATFORM.

A.PROPER_USER The operational environment objective OE.PROPER_USER is
realized through A.PROPER_USER.

A.PROPER_ADMIN The operational environment objective OE.PROPER_ADMIN is
realized through A.PROPER_ADMIN.

Table 5: Assumptions sufficiency

24 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Extended Components Definition

5 Extended Components Definition
The definition of all SFRs with the appendix of "_EXT" is supplied by the protection profile. These
SFRs are not defined in this section.

Version 1.4 Classification: atsec public 25 of 82
 Copyright © 2019 by Oracle and atsec

Security Requirements Security Target for Oracle Linux 7.3

6 Security Requirements
All of the following SFRs are derived from the OSPP.

The operations of assignments and selections are marked with bold font. The operation of
refinement is marked with strike through (deletion) or italics (addition). Iterations are marked with
an ID added to the SFR number.

The following styles of marking operations are applied with this Protection Profile:

• Assignments and selections are marked in bold face font.

• Iterations are marked by appending a suffix to the SFR identification.

• Refinements are marked in bold and italic face font.

6.1 Security Functional Requirements

6.1.1 Cryptographic Support

6.1.1.1 FCS_CKM.1(1) Cryptographic key generation

FCS_CKM.1.1 The OS shall generate asymmetric cryptographic keys in accordance with a
specified cryptographic key generation algorithm

RSA schemes using cryptographic key sizes of 2048-bit or greater that
meet the following: FIPS PUB 186-4, “Digital Signature Standard
(DSS)”, Appendix B.3,

ECC schemes using “NIST curves” P-256, P-384 and P-521 that meet
the following: FIPS PUB 186-4, “Digital Signature Standard (DSS)”,
Appendix B.4,

FFC schemes using cryptographic key sizes of 2048-bit or greater that
meet the following: FIPS PUB 186-4, “Digital Signature Standard
(DSS)”, Appendix B.1.

Application Note: The TOE supports the generation of RSA and ECDSA keys for the
OpenSSH host key as well as the OpenSSH user keys using the ssh-
keygen(1) application. The following CAVS certificates apply:

a) RSA implemented by OpenSSL: 2873

b) ECDSA implemented by OpenSSL: 1417

Application Note: The TOE supports the generation of RSA and ECDSA keys for the host
authentication used as part of the TLS protocol using the openssl(1)
application.

a) RSA implemented by OpenSSL: 2873

b) ECDSA implemented by OpenSSL: 1417

Application Note: TLS provided with NSS generates the ephemeral Diffie-Hellman keys. The
following CAVS certificates apply:

a) ECDSA key generation implemented by NSS: 1528

26 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Security Requirements

b) DSA key generation implemented by NSS: 1454

6.1.1.2 FCS_CKM.2(1) Cryptographic Key Establishment

FCS_CKM.2.1 The OS shall implement functionality to perform cryptographic key
establishment in accordance with a specified cryptographic key
establishment method:

RSA-based key establishment schemes that meets the following: NIST
Special Publication 800-56B, “Recommendation for Pair-Wise Key
Establishment Schemes Using Integer Factorization Cryptography”

and

Elliptic curve-based key establishment schemes that meets the
following: NIST Special Publication 800-56A, “Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography”

Finite field-based key establishment schemes that meets the following:
NIST Special Publication 800-56A, “Recommendation for Pair-Wise
Key Establishment Schemes Using Discrete Logarithm Cryptography”

Application Note: The TOE performs key agreement for the SSHv2 protocols using the
OpenSSL library. The following CAVS certificates apply:

a) RSA based key wrapping implemented by OpenSSL: 2873

b) Diffie-Hellman implemented by OpenSSL: CVL 1837

c) EC Diffie-Hellman implemented by OpenSSL: CVL 1837

Application Note: The TOE performs key agreement for the TLS protocols using the NSS
library. The following CAVS certificates apply:

a) RSA based key wrapping implemented by NSS: 3044

b) Diffie-Hellman implemented by NSS : CVL 2046

c) EC Diffie-Hellman implemented by NSS : CVL 2046

Application Note As part of the key agreement for SSHv2, the OpenSSH client and server
applications implement the key derivation function (KDF) according to
SP800-135. The following CAVS certificates apply:

a) SSHv2 KDF: CVL 1870

6.1.1.3 FCS_CKM.4 Cryptographic Key Distribution

FCS_CKM.4.1 The OS shall destroy cryptographic keys in accordance with the specified
cryptographic key destruction methods:

For volatile memory, the destruction shall be executed by a single
overwrite consisting of zeroes;

For non-volatile memory [that consists of the invocation of an interface
provided by the underlying platform that

Version 1.4 Classification: atsec public 27 of 82
 Copyright © 2019 by Oracle and atsec

Security Requirements Security Target for Oracle Linux 7.3

a) logically addresses the storage location of the key and performs a
single overwrite consisting of zeroes.

6.1.1.4 FCS_COP.1(1) Cryptographic operation – Encryption/Decryption

FCS_COP.1.1 The OS shall perform encryption/decryption services for data in accordance
with a specified cryptographic algorithm

AES-XTS (as defined in NIST SP 800-38E)

AES-CBC (as defined in NIST SP 800-38A)

and

AES-GCM (as defined in NIST SP 800-38D)

AES-CTR (as defined in NIST SP 800-38A) mode

and cryptographic key sizes 128-bit, 256-bit.

Application Note: The AES-CTR mode is added mandated by [SSH-EP]. The refinement
“SSH software” specified in the EP is considered merged into “OS”. The
selection “[selection: perform, invoke platform-provided]” is not marked as
the base PP does not contain this operation.

Application Note: The TOE performs symmetric encryption and decryption for the SSHv2
protocols using the OpenSSL library. The following CAVS certificates
apply:

a) AES: 5370

Application Note: The TOE performs symmetric encryption and decryption for the TLS
protocols using the NSS library. The following CAVS certificates apply:

a) AES: 5654

Application Note: The TOE performs symmetric encryption and decryption part of the block
device encryption using the Linux kernel crypto API. The following CAVS
certificates apply:

a) AES: 5402 (UEK), 5409 (RHCK)

6.1.1.5 FCS_COP.1(2) Cryptographic operation – Hashing

FCS_COP.1.1 The OS shall perform hashing services in accordance with a specified
cryptographic algorithm SHA-1 and

SHA-256

SHA-384

SHA-512

and message digest sizes 160 bits and

256 bits

384 bits

512 bits

28 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Security Requirements

that meet the following: FIPS Pub 180-4.

Application Note: The TOE performs hashing for the SSHv2 protocols using the OpenSSL
library. The following CAVS certificates apply:

a) SHA: 4312

Application Note: The TOE performs hashing for the TLS protocols using the NSS library. The
following CAVS certificates apply:

a) SHA: 4535

Application Note: The TOE performs hashing to support PBKDF2 to derive the KEK
protecting the DEK for the block device encryption mechanism using the
libgcrypt library. The following CAVS certificates apply:

a) SHA: 4217

Application Note: The TOE performs hashing to support the ESSIV initialization vector
derivation from a sector number for CBC-based disk encryption. The
following CAVS certificates apply:

a) SHA: 4331 (UEK), 4341 (RHCK)

6.1.1.6 FCS_COP.1(3) Cryptographic operation – Signing

FCS_COP.1.1 The OS shall perform cryptographic signature services (generation and
verification) in accordance with a specified cryptographic algorithm

RSA schemes using cryptographic key sizes of 2048-bit or greater that
meet the following: FIPS PUB 186-4, “Digital Signature Standard
(DSS)”, Section 4,

ECDSA schemes using “NIST curves” P-256, P-384 and P-521 that meet
the following: FIPS PUB 186-4, “Digital Signature Standard
(DSS)”Section 5.

Application Note: The TOE performs signature operation for the SSHv2 protocols as well as
the trusted update signature verification using the OpenSSL library. The
following CAVS certificates apply:

a) RSA: 2873

b) ECDSA: 1417

Application Note: The TOE performs signature operation for the TLS protocols as well as the
trusted update signature verification using the NSS library. The following
CAVS certificates apply:

a) RSA: 3044

b) ECDSA: 1528

6.1.1.7 FCS_COP.1(4) Cryptographic operation - Keyed-hash Message Authentication

FCS_COP.1.1 The OS shall perform keyed-hash message authentication services in
accordance with a specified cryptographic algorithm

Version 1.4 Classification: atsec public 29 of 82
 Copyright © 2019 by Oracle and atsec

Security Requirements Security Target for Oracle Linux 7.3

SHA-1

SHA-256

SHA-384

SHA-512

with key sizes key sizes larger than 112 bits and message digest sizes 160
bits, 256 bits, 384 bits, 512 bits that meet the following: FIPS Pub 198-1
The Keyed-Hash Message Authentication Code and FIPS Pub 180-4 Secure
Hash Standard.

Application Note: The TOE generates MACs for the SSHv2 protocols using the OpenSSL
library. The following CAVS certificates apply:

a) HMAC SHA: 3558

Application Note: The TOE generates MACs for the TLS protocols using the NSS library. The
following CAVS certificates apply:

a) HMAC SHA: 3767

Application Note: The TOE generates MACs to support PBKDF2 to derive the KEK
protecting the DEK for the block device encryption mechanism using the
libgcrypt library. The following CAVS certificates apply:

a) HMAC SHA: 3469

6.1.1.8 FCS_RBG_EXT.1 Random Bit Generation

FCS_RBG_EXT.1.1 The OS shall perform all deterministic random bit generation (DRBG)
services in accordance with NIST Special Publication 800-90A using

HMAC_DRBG (any),

Hash_DRBG (any),

CTR_DRBG (AES).

FCS_RBG_EXT.1.2 The deterministic RBG used by the OS shall be seeded by an entropy source
that accumulates entropy from a platform-based noise source with a
minimum of 256 bits of entropy at least equal to the greatest security
strength (according to NIST SP 800-57) of the keys and hashes that it will
generate.

Application Note: The TOE generates random bits for the SSHv2 protocols using the OpenSSL
library. The following CAVS certificates apply:

a) CTR_DRBG: 2079

Application Note: The TOE generates random bits for the TLS protocols using the NSS library.
The following CAVS certificates apply:

a) Hash_DRBG: 2284

Application Note: The TOE generates random bits to generate the DEK for the block device
encryption mechanism using the libgcrypt library. The following CAVS
certificates apply:

30 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Security Requirements

a) HMAC_DRBG: 2003

6.1.1.9 FCS_STO_EXT.1 Storage of Sensitive Data

FCS_STO_EXT.1.1 The OS shall implement functionality to encrypt sensitive data stored in
non-volatile storage and provide interfaces to applications to invoke this
functionality.

6.1.1.10 FCS_TLSC_EXT.1 TLS Client Protocol

FCS_TLSC_EXT.1.1 The OS shall implement TLS 1.2 (RFC 5246) supporting the following
cipher suites:

Mandatory cipher suites: TLS_RSA_WITH_AES_128_CBC_SHA as
defined in RFC 5246

Optional cipher suites:

TLS_DHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC
5246

TLS_DHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC
5246

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in RFC
4492

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in
RFC 5289

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in RFC
4492

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in
RFC 5289

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC
4492

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in
RFC 5289

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC
4492

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in
RFC 5289

FCS_TLSC_EXT.1.2 The OS shall verify that the presented identifier matches the reference
identifier according to RFC 6125.

FCS_TLSC_EXT.1.3 The OS shall only establish a trusted channel if the peer certificate is valid.

Version 1.4 Classification: atsec public 31 of 82
 Copyright © 2019 by Oracle and atsec

Security Requirements Security Target for Oracle Linux 7.3

6.1.1.11 FCS_TLSC_EXT.2 - TLS Client Curves Allowed

FCS_TLSC_EXT.2.1 The OS shall present the Supported Elliptic Curves Extension in the Client
Hello with the following NIST curves: secp256r1, secp384r1, secp521r1.

6.1.2 User Data Protection

6.1.2.1 FDP_ACF_EXT.1 Access Controls for Protecting User Data

FDP_ACF_EXT.1.1 The OS shall implement access controls which can prohibit unprivileged
users from accessing files and directories owned by other users.

6.1.2.2 FDP_IFC_EXT.1 Information flow control

FDP_IFC_EXT.1.1 The OS shall provide an interface which allows a VPN client to protect
all IP traffic using IPsec with the exception of IP traffic required to
establish the VPN connection.

6.1.3 Security Management

6.1.3.1 FMT_MOF_EXT.1 Management of security functions behavior

FMT_MOF_EXT.1.1 The TSF shall restrict the ability to perform the function indicated in column
3 of the “Management Functions” table in FMT_SMF_EXT.1.1 to the
administrator.

6.1.3.2 FMT_SMF_EXT.1 Extended: Specification of Management Functions

FMT_SMF_EXT.1.1 The TSF shall be capable of performing the following management functions:

Management Function FMT_SMF_EXT.1 FMT_MOF_EXT.1

Enable/disable screen lock X -

Configure screen lock inactivity timeout X -

Configure local audit storage capacity X X

Configure minimum password Length X X

Configure minimum number of special characters
in password

X X

Configure minimum number of numeric characters
in password

X X

Configure minimum number of uppercase
characters in password

X X

Configure minimum number of lowercase
characters in password

X X

Configure remote connection inactivity timeout X -

Enable/disable unauthenticated logon - -

32 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Security Requirements

Management Function FMT_SMF_EXT.1 FMT_MOF_EXT.1

Configure lockout policy for unsuccessful
authentication attempts through limiting number
of attempts during a time period

X X

Configure host-based firewall X X

Configure name/address of directory server to bind
with

- -

Configure name/address of remote management
server from which to receive management settings

- -

Configure name/address of audit/logging server to
which to send audit/logging records

X X

Configure audit rules X X

Configure name/address of network time server X X

Enable/disable automatic software update X X

Configure WiFi interface - -

Enable/disable Bluetooth interface X X

Configure USB interfaces - -

Enable/disable no other devices X X

No other management functions X X

Table 6: Management Functions

6.1.4 Protection of the TSF

6.1.4.1 FPT_ACF_EXT.1 Access Controls

FPT_ACF_EXT.1.1 The OS shall implement access controls which prohibit unprivileged users
from modifying:

• Kernel and its drivers/modules

• Security audit logs

• Shared libraries

• System executables

• System configuration files

• no other object

Version 1.4 Classification: atsec public 33 of 82
 Copyright © 2019 by Oracle and atsec

Security Requirements Security Target for Oracle Linux 7.3

FPT_ACF_EXT.1.2 The OS shall implement access controls which prohibit unprivileged users
from reading:

• Security audit logs

• System-wide credential repositories

• no other object

6.1.4.2 FPT_ASLR_EXT.1 Address Space Layout Randomization

FPT_ASLR_EXT.1.1 The OS shall always randomize process address space memory locations
except for the Linux kernel, non-Position-Independent-Executable
applications, non-Position-Intependent-Code shared libraries.

6.1.4.3 FPT_SBOP_EXT.1 Stack Buffer Overflow Protection

FPT_SBOP_EXT.1.1 The OS shall be compiled with stack-based buffer overflow protections
enabled.

6.1.4.4 FPT_TST_EXT.1 Boot Integrity

FPT_TST_EXT.1.1 The OS shall verify the integrity of the bootchain up through the OS kernel
and no other software component prior to its execution through the use of
a digital signature using a hardware-protected asymmetric key.

6.1.4.5 FPT_TUD_EXT.1 Trusted Update

FPT_TUD_EXT.1.1 The OS shall provide the ability to check for updates to the OS software
itself.

FPT_TUD_EXT.1.2 The OS shall cryptographically verify updates to itself using a digital
signature prior to installation using schemes specified in FCS_COP.1(3).

6.1.4.6 FPT_TUD_EXT.2 Trusted Update for Application Software

FPT_TUD_EXT.2.1 The OS shall provide the ability to check for updates to application
software.

FPT_TUD_EXT.2.2 The OS shall cryptographically verify the integrity of updates to
applications using a digital signature specified by FCS_COP.1(3) prior to
installation.

6.1.5 Audit Data Generation

FAU_GEN.1 Audit data generation

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable
events:

a) Start-up and shutdown of the audit functions;

b) All auditable events for the not specified level of audit; and

c) Authentication events (Success, Failure);

34 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Security Requirements

d) Use of privileged, special rights events (Successful and unsuccessful
security, audit, and configuration changes);

e) Privilege or role escalation events (Success/Failure);

f) no other event

FAU_GEN.1.2 The TSF shall record within each audit record at least the following
information:

a) Date and time of the event, type of event, subject identity (if
applicable), and outcome of the event; and

b) For each audit event type, based on the auditable event definitions of
the functional components included in the PP/ST, User identity (if
applicable)

6.1.6 Identification and Authentication

6.1.6.1 FIA_AFL.1 Authentication failure handling

FIA_AFL.1.1 The OS shall detect when an administrator configurable positive integer
within a any range of positive integers unsuccessful authentication
attempts for authentication based on user name and password occur
related to authentication on local console, password-based
authentication via SSHv2 protocol.

FIA_AFL.1.2 When the defined number of unsuccessful authentication attempts for an
account has been met, the OS shall: Account Disablement

6.1.6.2 FIA_UAU.5 Multiple Authentication Mechanisms

FIA_UAU.5.1 The OS shall provide the following authentication mechanisms
authentication based on user name and password, SSH public key-
based authentication as specified by the Extended Package for Secure
Shell to support user authentication.

FIA_UAU.5.2 The OS shall authenticate any user's claimed identity according to the
following rule: authentication on the local console is based on user
name and password, authentication via the SSHv2 protocol first
performs the certificate-based authentication which is followed by the
user name and password authentication if the certificate-based
authentication was unsuccessful.

6.1.6.3 FIA_X509_EXT.1 X.509 Certificate Validation

FIA_X509_EXT.1.1 The OS shall implement functionality to validate certificates in accordance
with the following rules:

• RFC 5280 certificate validation and certificate path validation.

• The certificate path must terminate with a trusted CA certificate.

Version 1.4 Classification: atsec public 35 of 82
 Copyright © 2019 by Oracle and atsec

Security Requirements Security Target for Oracle Linux 7.3

• The OS shall validate a certificate path by ensuring the presence of the
basicConstraints extension and that the CA flag is set to TRUE for all
CA certificates.

• The OS shall validate the revocation status of the certificate using the
Online Certificate Status Protocol (OCSP) as specified in RFC
2560, a Certificate Revocation List (CRL) as specified in RFC
5759, an OCSP TLS Status Request Extension (i.e., OCSP
stapling) as specified in RFC 6066.

• The OS shall validate the extendedKeyUsage field according to the
following rules:

⚬ Certificates used for trusted updates and executable code
integrity verification shall have the Code Signing purpose (id-kp
3 with OID 1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.

⚬ Server certificates presented for TLS shall have the Server
Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in
the extendedKeyUsage field.

⚬ Client certificates presented for TLS shall have the Client
Authentication purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in
the extendedKeyUsage field.

⚬ S/MIME certificates presented for email encryption and
signature shall have the Email Protection purpose (id-kp 4 with
OID 1.3.6.1.5.5.7.3.4) in the extendedKeyUsage field.

⚬ OCSP certificates presented for OCSP responses shall have the
OCSP Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in
the extendedKeyUsage field.

⚬ (Conditional) Server certificates presented for EST shall have
the CMC Registration Authority (RA) purpose (id-kp-cmcRA
with OID 1.3.6.1.5.5.7.3.28) in the extendedKeyUsage field.

FIA_X509_EXT.1.2 The OS shall only treat a certificate as a CA certificate if the
basicConstraints extension is present and the CA flag is set to TRUE.

6.1.6.4 FIA_X509_EXT.2 X.509 Certificate Authentication

FIA_X509_EXT.2.1 The OS shall use X.509v3 certificates as defined by RFC 5280 to support
authentication for TLS and no other protocols connections.

6.1.7 Trusted Path/Channel

6.1.7.1 FTP_ITC_EXT.1 Trusted channel communication

FTP_ITC_EXT.1.1 The OS shall use TLS as conforming to FCS_TLSC_EXT.1, SSH as
conforming to the Extended Package for Secure Shell to provide a
trusted communication channel between itself and authorized IT entities
supporting the following capabilities: management server that is logically
distinct from other communication channels and provides assured

36 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 Security Requirements

identification of its end points and protection of the channel data from
disclosure and detection of modification of the channel data.

6.1.7.2 FTP_TRP.1 Trusted Path

FTP_TRP.1.1 The OS shall provide a communication path between itself and local users
that is logically distinct from other communication paths and provides
assured identification of its endpoints and protection of the communicated
data from modification and disclosure.

FTP_TRP.1.2 The OS shall permit the TSF, local users, remote users to initiate
communication via the trusted path.

FTP_TRP.1.3 The OS shall require use of the trusted path for all remote administrative
actions.

6.1.8 Extended Package for Secure Shell

6.1.8.1 FCS_SSH_EXT.1 SSH Protocol

FCS_SSH_EXT.1.1 The SSH software shall implement the SSH protocol that complies with
RFCs 4251, 4252, 4253, 4254 and 5647, 5656, 6668 as a client, server.

6.1.8.2 FCS_SSHC_EXT.1 SSH Protocol - Client

FCS_SSHC_EXT.1.1 The SSH client shall ensure that the SSH protocol implementation supports
the following authentication methods as described in RFC 4252: public key-
based, and password-based.

FCS_SSHC_EXT.1.2 The SSH client shall ensure that, as described in RFC 4253, packets greater
than 262144 bytes in an SSH transport connection are dropped.

FCS_SSHC_EXT.1.3 The SSH software shall ensure that the SSH transport implementation uses
the following encryption algorithms and rejects all other encryption
algorithms: aes128-ctr, aes256-ctr, aes128-cbc, aes256-cbc,
AEAD_AES_128_GCM, AEAD_AES_256_GCM.

FCS_SSHC_EXT.1.4 The SSH client shall ensure that the SSH transport implementation uses ssh-
rsa, ecdsa-sha2-nistp256 and ecdsa-sha2-nistp384 as its public key
algorithm(s) and rejects all other public key algorithms.

FCS_SSHC_EXT.1.5 The SSH client shall ensure that the SSH transport implementation uses
hmac-sha1, hmac-sha1-96, hmac-sha2-256, hmac-sha2-512 and
AEAD_AES_128_GCM, AEAD_AES_256_GCM as its data integrity
MAC algorithm(s) and rejects all other MAC algorithm(s).

FCS_SSHC_EXT.1.6 The SSH client shall ensure that diffie-hellman-group14-sha1, ecdh-sha2-
nistp256 and ecdh-sha2-nistp384, ecdh-sha2-nistp521 are the only
allowed key exchange methods used for the SSH protocol.

FCS_SSHC_EXT.1.7 The SSH server shall ensure that the SSH connection be rekeyed after no
more than 228 packets have been transmitted using that key.

FCS_SSHC_EXT.1.8 The SSH client shall ensure that the SSH client authenticates the identity of
the SSH server using a local database associating each host name with its

Version 1.4 Classification: atsec public 37 of 82
 Copyright © 2019 by Oracle and atsec

Security Requirements Security Target for Oracle Linux 7.3

corresponding public key or no other methods as described in RFC 4251
section 4.1.

6.1.8.3 FCS_SSHS_EXT.1 SSH Protocol - Server

FCS_SSHS_EXT.1.1 The SSH server shall ensure that the SSH protocol implementation supports
the following authentication methods as described in RFC 4252: public key-
based, and password-based.

FCS_SSHS_EXT.1.2 The SSH server shall ensure that, as described in RFC 4253, packets greater
than 262144 bytes in an SSH transport connection are dropped.

FCS_SSHS_EXT.1.3 The SSH server shall ensure that the SSH transport implementation uses the
following encryption algorithms and rejects all other encryption algorithms:
aes128-ctr, aes256-ctr, aes128-cbc, aes256-cbc, AEAD_AES_128_GCM,
AEAD_AES_256_GCM.

FCS_SSHS_EXT.1.4 The SSH server shall ensure that the SSH transport implementation uses
ssh-rsa, ecdsa-sha2-nistp256 and ecdsa-sha2-nistp384 as its public key
algorithm(s) and rejects all other public key algorithms.

FCS_SSHS_EXT.1.5 The SSH server shall ensure that the SSH transport implementation uses
hmac-sha1, hmac-sha1-96, hmac-sha2-256, hmac-sha2-512 and
AEAD_AES_128_GCM, AEAD_AES_256_GCM as its MAC
algorithm(s) and rejects all other MAC algorithm(s).

FCS_SSHS_EXT.1.6 The SSH server shall ensure that diffie-hellman-group14-sha1, ecdh-sha2-
nistp256 and ecdh-sha2-nistp384, ecdh-sha2-nistp521 are the only
allowed key exchange methods used for the SSH protocol.

FCS_SSHS_EXT.1.7 The SSH server shall ensure that the SSH connection be rekeyed after no
more than 228 packets have been transmitted using that key.

6.2 Rationale for Security Functional Requirements

All SFRs are reproduced exactly from the PP and the extended packages. No SFR is added. As the
Protection Profile does not provide an SFR rationale, this ST does not require one.

6.3 Security Assurance Requirements

The Protection Profile specifies the Security Assurance Requirements which are not re-iterated in
this document.

6.4 Rationale for Security Assurance Requirements

The Security Target claims exact compliance to the Protection Profile, including to the Security
Assurance Requirements. As the Protection Profile does not provide an SAR rationale, this ST does
not require one.

38 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

7 TOE Summary Specification
The following section explains how the security functions are implemented. The different TOE
security functions cover the various SFR classes.

7.1 Cryptographic Support

The TOE implements different cryptographic service providers enumerated as documented in the
following sections.

Symmetric key material and Diffie-Hellman / EC Diffie-Hellman public and private keys are
always considered ephemeral and stored in volatile memory only irrespective of the cryptographic
service provider listed below.

Asymmetric key material with the exception of Diffie-Hellman / EC Diffie-Hellman public and
private keys is considered to be reused multiple times and is therefore stored on hard disk. The
following locations for key material is used:

• OpenSSH (the TOE acts as a sender and recipient):

◦ /etc/ssh contains the system-wide keys like host keys. They are generated using ssh-
keygen during the first boot after installation.

◦ $HOME/.ssh for per-user keys (note, the SSH client applications allows providing a key
file name with command line options which implies that the user can specify arbitrary
key files). These key files are generated using ssh-keygen invoked by the user. In
addition, for key-based authentication, the public key of the authenticating user is
generated remotely and added to $HOME/.ssh/authorized_keys.

◦ The symmetric session key and the integrity key are derived using the SSH KDF from
the shared secret calculated with the Diffie-Hellman / EC Diffie-Hellman operation
performed during the handshake of the SSH session establishment.

◦ OpenSSH supports the following ciphers:

▪ Data protection: AES-128 CBC, AES-256 CBC, AES-128 CTR, AES-256 CTR,
AES-128 GCM, AES-256 GCM, HMAC SHA-1, HMAC SHA-256, HMAC SHA-
512

▪ Authentication: RSA 2048 through 3072, ECDSA with P-256, P-384 and P-521
using SHA-1 or SHA-2

▪ Key-agreement: DH with Group 14, DH with domain parameters specified in
/etc/ssh/moduli, ECDH with P-256, P-384 and P-521

• NSS (the TOE acts as a sender and recipient):

◦ Per default, keys used for the TLS operation are stored in /etc/pki. These keys may be
generated using the openssl command. It is also permissible to import key material
generated remotely.

◦ The symmetric session key and the integrity key are derived using the TLS KDF from
the shared secret calculated with the Diffie-Hellman / EC Diffie-Hellman operation
performed during the handshake of the TLS session establishment. In addition, the
shared secret may be exchanged using RSA key wrapping if the respective TLS cipher

Version 1.4 Classification: atsec public 39 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

suite is used. All key material is stored in volatile memory of the NSS-consuming
applications.

◦ The certificate verification supports matching of the remote identifier with the
certificate’s CN (either host full qualified DNS name or IP address), DNS SAN, URI
SAN. The TOE does not support certificate pinning.

7.1.1 Linux kernel crypto API

To support cryptographic operations inside the Linux kernel, the kernel crypto API is used. This
implementation is used by disk encryption.

The Linux kernel crypto API implements the following ciphers:

• AES with 128 and 256 bits and block chaining modes CBC, XTS.

• SHA-1, SHA-256, SHA-384, SHA-512

In case of decryption errors, the TOE will return an error to the remote entity.

The kernel crypto API clears all RAM buffers holding sensitive data or keys by overwriting the
memory with zeros before releasing it.

7.1.2 OpenSSL

The OpenSSL library is used to support the SSHv2 protocol implementation. In addition, OpenSSL
supports the generation of RSA and ECDSA key pairs conformant to FIPS 186-4. In addition,
OpenSSL provides the generation of Diffie-Hellman and EC Diffie-Hellman public and private key
pairs. Also, OpenSSL implements the Diffie-Hellman and EC Diffie-Hellman key agreement.

OpenSSL implements the following ciphers that supports the OpenSSH application:

• RSA key pair generation for key sizes of 2048, and 3072 bits following FIPS 186-4,
Appendix B.3.

• ECC key pair generation using NIST P-256, NIST P-384, NIST P-521 following FIPS 186-
4, Appendix B4.

• FFC key pair generation with key sizes of 2048, 3072 and 4096 bits following FIPS 186-4
Appendix A.1.

• EC Diffie-Hellman key agreement using NIST P-256, NIST P-384, NIST P-521.

• Diffie Hellman key agreement using key sizes of 2048, 3072, 4096 bits.

• AES with 128 and 256 bits and block chaining modes CBC, GCM, CTR.

• SHA-1, SHA-256, SHA-384, SHA-512 used for signature operations and HMAC operations
and offered as a generic service

• RSA signature generation and verification using SHA-1 and SHA-2 together with RSA keys
of the size of 2048, and 3072 bits following FIPS 186-4.

• ECDSA signature generation and verification using SHA-1 and SHA-2 using NIST P-256,
NIST P-384, NIST P-521.

• HMAC SHA-1, HMAC SHA-256, HMAC SHA-384, HMAC SHA-512

• CTR DRBG with AES 256 core, without prediction resistance, with derivation function

40 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

Please note that the HMAC SHA-1-96 cipher used in SSHv2 is a truncation of the HMAC SHA-1
keyed message digest to 96 bits performed by OpenSSH.

In case of decryption errors, the TOE will return an error to the remote entity.

The OpenSSL library clears all RAM buffers holding sensitive data or keys by overwriting the
memory with a data pattern before releasing it.

7.1.3 NSS

The NSS shared library enables the cryptographic support in the TLS protocol implementation. All
cryptographic primitives are implemented by NSS. In addition, NSS supports the generation of RSA
key pairs conformant to FIPS 186-4. In addition, NSS provides the generation of Diffie-Hellman
and EC Diffie-Hellman public and private key pairs. Also, NSS implements the Diffie-Hellman and
EC Diffie-Hellman key agreement.

NSS implements the following ciphers:

• RSA key pair generation for key sizes of 2048, and 3072 bits following FIPS 186-4,
Appendix B.3.

• FFC key pair generation with key sizes of 2048, and 3072 bits following FIPS 186-4
Appendix A.1.

• Diffie Hellman key agreement using key sizes of 2048, and 3072 bits.

• AES with 128 and 256 bits and block chaining modes CBC, GCM.

• SHA-1, SHA-256, SHA-384, SHA-512 used for signature operations, HMAC operations
and the DRBG

• RSA signature generation and verification using SHA-1 and SHA-2 together with RSA keys
of the size of 2048, and 3072 bits following FIPS 186-4.

• HMAC SHA-1, HMAC SHA-256, HMAC SHA-384, HMAC SHA-512

• Hash DRBG with SHA 256 core, without prediction resistance

NSS supports all TLS cipher suites listed in FCS_TLSC_EXT.1. NSS allows using the following
reference identifies to be verified during TLS channel establishment:

• DNS host name or IP address found in Common Name of the X.509 certificate. Wild cards
are supported.

• DNS host name found in the SAN for DNS names of the X.509 certificate.

• URI name found in the SAN for URI names of the X.509 certificate.

7.1.4 Libgcrypt

The libgcrypt library is used by the system service configuring and enabling the full disk
encryption.

Libgcrypt implements the following ciphers:

• SHA-1, SHA-256, SHA-384, SHA-512 used for HMAC operations

• HMAC SHA-1, HMAC SHA-256, HMAC SHA-384, HMAC SHA-512 used for the
PBKDF2 operation and DRBG

Version 1.4 Classification: atsec public 41 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

• HMAC DRBG with SHA 256 core, without prediction resistance

In case of decryption errors, the TOE will return an error to the remote entity.

The libgcrypt library clears all RAM buffers holding sensitive data or keys by overwriting the
memory with zeros before releasing it.

7.1.5 Block Device Encryption Support

The TOE offers block device encryption support where zero or more disk partitions can be
encrypted as a whole. Using the block device encryption support, a full-disk encryption (FDE)
schema can be achieved. When using FDE, at least the directory /boot must remain in clear.

7.1.5.1 Device Mapper

Logical volume management provides a higher-level view of the disk storage on a computer system
than the traditional view of disks and partitions. This gives the system administrator much more
flexibility in allocating storage to applications and users.

Storage volumes created under the control of the logical volume manager can be resized and moved
around almost at will, although this may need some upgrading of file system tools.

The device mapper implements a framework that allows “targets” to remap access requests. The
device mapper is called by the generic block layer before the physical device is accessed.

The information flow between VFS and the physical block device covers the following steps:

1. VFS issues a request to access data on some block device. VFS informs the block layer
about which data segments are requested on which block device and potentially hands over
the data to be stored in the given segments.

2. The generic block layer receives the request. Instead of accessing the requested data
segments on the given block device, the block layer diverts into the device mapper
framework, giving it the requested data segments, the data and the block device. The device
mapper looks up the device mapper targets defined for the given block device. The device
mapper invokes the configured target and gives it requested block device and data segment.
The target performs its operation by altering either the block device, the requested data
segments and/or the contents of the data segments.

3. The device mapper target relays the potentially altered block device, data segments and data
back to the device mapper framework.

4. The block layer uses the new information from the device mapper to perform the requested
operation on the block device with the given segment and data.

When data is returned from the block device, the discussed steps are followed in reverse order.

The goal of the device mapper is to allow the device mapper target to alter one or more of the:

1. block device;

2. location of the data segments on the block device;

3. contents of the data

while the request is in transit between the VFS layer and the physical device. This discussion shows
that the device mapper operation is fully transparent to the VFS layer. As the device mapper does

42 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

not interpret the data that it manages, it is therefore fully agnostic of the VFS data. This ultimately
means that the VFS layer and the device mapper do not need to have any knowledge about each
other.

The origin of the device mapper lies in implementing a Logical Volume Manager (LVM), allowing
administrators to configure different physical block devices to be used as one single disk by VFS
and therefore a file system. LVM device mapper targets usually alter the of block device and the
location of the data segments on the block device.

Note that the Device Mapper supports stacked targets where the output of one target is the input to
another target instead of the input to either the physical device or VFS.

As part of the device mapper framework, many device mapper targets are available. These targets
are documented in Documentation/device-mapper/.

7.1.5.2 dm_crypt Target

The dm_crypt target is a device mapper target that is intended to transparently encrypt and decrypt
data. Therefore, it is intended to modify the data that is flowing between a physical disk and the
VFS. As already mentioned, the device mapper including the dm_crypt target has no knowledge
about the meaning of the data they manage. This implies that the dm_crypt target receives a block
of data, encrypts or decrypts it and forwards it.

Figure 1 depicts the operation of the dm_crypt target on the data exchange between VFS and the
physical disk device.

When VFS issues a read request, the following steps are performed by the kernel:

1. VFS issues the read requests by giving the intended block device (/dev/mapper/crypt in our
example) and the data segment (10 in our example).

2. The block layer receives the request and forwards it to the Device Mapper framework. The
device mapper has an association between the given block device name /dev/mapper/crypt
and the target handling that device. In our example, this device is handled by dm_crypt.
Therefore, the Device Mapper framework invokes the appropriate instance of the dm_crypt
target covering /dev/mapper/crypt by supplying the read request and the segment number to
be read.

Version 1.4 Classification: atsec public 43 of 82
 Copyright © 2019 by Oracle and atsec

Figure 1: dm_crypt Device
Mapper Target Operation

TOE Summary Specification Security Target for Oracle Linux 7.3

3. The dm_crypt target fetches the requested segment from the physical device configured to
back /dev/mapper/crypt (/dev/sda1 in our example) – in figure 1, dm_crypt fetches the 16
bytes of data 0x18AD592BBDE617A from /dev/sda1. After fetching the segment, dm_crypt
performs a decryption operation with the cipher, and key with the current instance of the
dm_crypt target. In our example, dm_crypt decrypts the data read from disk into
0x1234567890ABCDEF.

4. The Device Mapper returns the data 0x1234567890ABCDEF to the calling VFS for initial
request.

When VFS issues a write request, the following steps are performed by the kernel:

1. VFS issues the write request by giving the intended block device (/dev/mapper/crypt in our
example), the data segment (10 in our example) and the data to be written
(0x1234567890ABCDEF in our example).

2. The block layer receives the request and forwards it to the Device Mapper framework. The
device mapper has an association between the given block device name /dev/mapper/crypt
and the target handling that device. In our example, this device is handled by dm_crypt.
Therefore, the Device Mapper framework invokes the appropriate instance of the dm_crypt
target covering /dev/mapper/crypt by supplying the write request, the segment number to be
written and the data to be written.

3. The dm_crypt target performs an encryption operation on the supplied data with the cipher
and key associated with the current instance of the dm_crypt target. The dm_crypt target
transforms the original data into 0x18AD592BBDE617A in our example.

4. The dm_crypt target issues a write request to the physical device configured as a backend
to /dev/mapper/crypt (/dev/sda1 in our example) and writes the data 0x18AD592BBDE617A
to segment 10.

The configuration of the dm_crypt target is performed with the cryptsetup application. That
application provides the following information to the kernel when instantiating one dm_crypt target:

• The physical device hosting the encrypted data (/dev/sda1).

• The logical device name (crypt which is used to form /dev/mapper/crypt).

• The cipher type to perform the cryptographic operations.

• The key material required by the cipher.

The discussion of the cryptsetup application in subsequent sections will show where it obtains this
information from.

7.1.5.2.1 Initialization Vector Handling

In addition to considering the general idea of the dm_crypt target, the handling of the initialization
vector must be considered as well. dm_crypt implements several different flavors for obtaining the
IV:

• plain The initialization vector is the 32-bit little-endian version of the sector number, padded
with zeros if necessary.

• plain64 The initialization vector is the 64-bit little-endian version of the sector number,
padded with zeros if necessary.

44 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

• essiv The term “essiv” is the abbreviation for “encrypted sector|salt initial vector", the sector
number is encrypted with the bulk cipher using a salt as key. The salt is derived from the
cipher key used for encrypting the data with via hashing.

• benbi benbi is the 64-bit “big-endian `narrow block'-count” IV handling method. The IV
starts at 1 which is needed for LRW-32-AES and possible other narrow block modes.

• null The initial vector is always zero. This IV handling method provides compatibility with
obsolete loop_fish2 devices. It is not recommended for new devices.

7.1.5.2.2 XTS tweak generation

The XTS tweak is generated from the IV provided by dm-crypt. Depending on the chosen IV
generation strategy outlined above, different types of IVs are generated by dm-crypt. For XTS, the
most common format is plain64.

7.1.5.2.3 Cryptographic Support

The dm-crypt Device Mapper target uses the kernel crypto API which provides the implementation
of the cryptographic primitives.

All ciphers offered by the kernel crypto API can be used by dm_crypt. Per default, AES 256 in XTS
mode is selected during the initialization of an encrypted block device.

7.1.5.2.4 Sensitive Data Processing

The master volume key, i.e. the AES key used to encrypt the entire partition with is stored on the
protected partition in a section called the LUKS header. This AES key, i.e. the data encryption key
(DEK), is encrypted with a key-encryption key (KEK). The encryption algorithm used for
encrypting the DEK is identical to the encryption algorithm used to encrypt the block device.

The sensitive data process, i.e. the generation of the KEK to decrypt the DEK and to initialize the
access to the encrypted block device is handed by the cryptsetup application. Using the LUKS
schema, the interaction with the kernel and the key generation can be characterized with figure 2.

1. Cryptsetup is invoked with the physical device hosting the dm-encrypted data – /dev/sda1 in
the figure above. Cryptsetup reads the first blocks off the device containing the LUKS
header.

2. Cryptsetup identifies the encrypted key in the LUKS header and decrypts it with either the
user-provided passphrase or a key file that is provided by the calling user.

Version 1.4 Classification: atsec public 45 of 82
 Copyright © 2019 by Oracle and atsec

Figure 2: Cryptsetup Operation

TOE Summary Specification Security Target for Oracle Linux 7.3

3. After the decryption operation, the original key is extracted. This original key is hashed
repeatedly to generate the session key used for the encryption and decryption operation.

4. Now, cryptsetup injects the session key along with configuration information about the used
cipher, the IV, the hash and the physical device used to store the data (/dev/sda1 in this
example) into the kernel to instantiate a device mapping using dm_crypt which is named
/dev/mapper/crypt.

5. The kernel has all required data to encrypt all data written into /dev/mapper/crypt and write
it to the intended device of /dev/sda1. When reading data out of /dev/mapper/crypt, the
kernel is able to decrypt the data from /dev/sda1 and present it to the caller.

When a partition is initialized to encrypt data, the master volume key, i.e. the DEK is generated by
cryptsetup using the DRBG of the libgcrypt shared library.

7.1.6 Self Tests

All cryptographic service providers mentioned above are covered with FIPS 140-2 integrity tests.

7.2 User Data Protection

The general policy enforced is that subjects (i.e., processes) are allowed only the accesses specified
by the policies applicable to the object the subject requests access to. Further, the ability to
propagate access permissions is limited to those subjects who have that permission, as determined
by the policies applicable to the object the subject requests access to.

A subject may possess one or more of the following capabilities which provide the following
exemptions from the DAC mechanism:

• CAP_DAC_OVERRIDE: A process with this capability is exempt from all restrictions of
the discretionary access control and can perform any action desired. For the execution of a
file, the permission bit vector of that file must contain at least one execute bit.

• CAP_DAC_READ_SEARCH: A process with this capability overrides all DAC restrictions
regarding read and search on files and directories.

• CAP_CHOWN: A process with this capability is allowed to make arbitrary changes to a
file's UID or GID.

• CAP_FOWNER: Setting permissions and ownership on objects even if the process' UID
does not match the UID of the object.

• CAP_FSETID: Don't clear SUID and SGID permission bits when a file is modified.

DAC provides the mechanism that allows users to specify and control access to objects that they
own. DAC attributes are assigned to objects at creation time and remain in effect until the object is
destroyed or the object attributes are changed. DAC attributes exist for, and are particular to, each
type of named object known to the TOE. DAC is implemented with permission bits and, when
specified, ACLs.

The outlined DAC mechanism applies only to named objects which can be used to store or transmit
user data. Other named objects are also covered by the DAC mechanism but may be supplemented
by further restrictions. These additional restrictions are out of scope for this evaluation. Examples of
objects which are accessible to users that cannot be used to store or transmit user data are: virtual

46 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

file systems externalizing kernel data structures (such as most of procfs, sysfs, binfmt_misc) and
process signals.

During creation of objects, the TSF ensures that all residual contents is removed from that object
before making it accessible to the subject requesting the creation.

When data is imported into the TOE (such as when mounting disks created by other trusted
systems), the TOE enforces the permission bits and ACLs applied to the file system objects.

During the creation of file system objects, the TOE ensures that new and zeroized memory is used
for the newly allocated object. This ensures that any data previously present in the storage area is
overwritten.

7.2.1 Permission Bits

The TOE supports standard UNIX permission bits to provide one form of DAC for file system
objects in all supported file systems. There are three sets of three bits that define access for three
categories of users: the owning user, users in the owning group, and other users. The three bits in
each set indicate the access permissions granted to each user category: one bit for read (r), one for
write (w) and one for execute (x). Note that write access to file systems mounted as read only (e. g.
CD-ROM) is always rejected (the exceptions are character and block device files which can still be
written to as write operations do not modify the information on the storage media). The SAVETXT
attribute is used for world-writable temp directories preventing the removal of files by users other
than the owner.

Each process has an inheritable “umask” attribute which is used to determine the default access
permissions for new objects. It is a bit mask of the user/group/other read/write/execute bits, and
specifies the access bits to be removed from new objects. For example, setting the umask to “002”
ensures that new objects will be writable by the owner and group, but not by others. The umask is
defined by the administrator in the /etc/login.defs file or 022 by default if not specified.

7.2.2 Access Control Lists (ACLs)

The TOE provides support for POSIX type ACLs to define a fine grained access control on a user
basis. ACLs are supported for all file system objects stored with the following file systems:

• ext4

• XFS

• tmpfs

An ACL entry contains the following information:

• A tag type that specifies the type of the ACL entry

• A qualifier that specifies an instance of an ACL entry type

• A permission set that specifies the discretionary access rights for processes identified by the
tag type and qualifier

An ACL contains exactly one entry of three different tag types (called the "required ACL entries”
forming the "minimum ACL"). The standard UNIX file permission bits as described in the previous
section are represented by the entries in the minimum ACL.

Version 1.4 Classification: atsec public 47 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

A default ACL is an additional ACL which may be associated with a directory. This default ACL has
no effect on the access to this directory. Instead the default ACL is used to initialize the ACL for any
file that is created in this directory. If the new file created is a directory it inherits the default ACL
from its parent directory. When an object is created within a directory and the ACL is not defined
with the function creating the object, the new object inherits the default ACL of its parent directory
as its initial ACL.

7.2.3 Special Permission

In addition, the following additional access control bits are processed by the kernel:

• SUID bit: When an executable marked with the SUID bit is executed, the effective UID of
the process is changed to the UID of the owner of the file. The SUID bit for file system
objects other than files is ignored.

• SGID bit: When an executable marked with the SGID bit is executed, the effective GID of
the process is changed to the owning GID of the file. The SGID bit for file system objects
other than files is ignored.

• SAVETXT: When a directory is marked with the SAVETXT bit, only the owner of a file
system object in that directory can remove it. This bit is commonly used for world-writable
directories like /tmp. Only processes with the CAP_FOWNER capability are able to remove
the file system object if their UID is different than the owning UID of the file system object.

7.3 Protection of TSF Data

All TSF data is commonly read-only for users based on the DAC permission bits. For sensitive TSF
data such as user passwords or private keys, the permission bits do not allow any access by a user.

The following listing enumerates the storage location of TSF data:

• The directory /etc/ contains all configuration files for system-wide configurations. This
includes the location for key material.

• The directory /dev/ contains device files to allow interaction between applications and
devices.

• The directories /lib, /lib64, /usr/lib and /usr/lib64 contain shared libraries.

• The directory /lib/modules contains kernel drivers.

• The directory /usr/share and all directories in /var except /var/tmp contains TSF data specific
to certain shared libraries and applications.

• The directories /bin, /sbin, /usr/sbin, /usr/bin contain TSF executables.

• The directories /sys and /proc contain kernel interfaces usable by applications.

• The directory /boot contains the kernel binary and the boot file system (initramfs).

7.3.1 Stack Buffer Overflow Protection

The GCC compiler is used to generate all system binaries including the kernel. All binaries (i.e. the
kernel, kernel modules, executables, shared libraries) are compiled with the option “stack-protector-
strong” to add a stack canary and associated verification code during the entry and exit of function
frames.

48 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

7.3.2 Boot Process

When a computer with Linux is turned on, the operating system is loaded into memory by a special
program called a boot loader. A boot loader usually exists on the system's primary hard drive, or
other media device, and has the sole responsibility of loading the Linux kernel with its required files
or, in some cases, other operating systems, into memory. Each architecture capable of running
Linux uses a different boot loader.

7.3.2.1 Boot Loader

A boot loader is a program that resides in the starting sectors of a disk, that is, the Master Boot
Record (MBR) of the hard disk. After testing the system during boot, the Basic Input-Output
System (BIOS) transfers control to the MBR if the system is set to be booted from there. Then the
program residing in MBR gets executed. This program is called the boot loader. Its duty is to
transfer control to the operating system, which will then proceed with the boot process.

The boot process consists of the following steps when the CPU is powered on or reset:

1. The firmware performs any hardware initialization steps.

2. The BIOS searches for the boot loader to boot in an order predefined by the firmware
setting. Once a valid device is found, the firmware copies the contents of its first sector
containing the boot loader into RAM, and starts executing the code just copied.

Every boot loader performs the following general steps to initialize Linux:

1. Loading the kernel image it is configured to load (the actual way of configuring the boot
loader is different for each boot loader implementation). The loading process ensures that
the kernel image is loaded to a well-defined memory location.

2. Loading the initramfs image it is configured to load. Again, this image is loaded to a well-
defined memory location.

3. The kernel is compiled such that the setup function will always be loaded into a well-known
memory location. This allows the boot loader to jump to the setup function to transfer
control to the kernel.

7.3.2.2 Kernel Boot Process

The following initialization process is followed by the kernel. The details of the boot process are
very different for each architecture. However, the following high-level steps are followed by each
architecture.

Note, the kernel binary is compressed, except for a small code portion. That portion contains the
setup code and the decompression routines in the kernel code to allow the kernel code to
decompress itself.

The following steps are performed by the kernel after being loaded by the boot loader.

1. The setup function reinitializes the hardware devices in the computer and sets up the
environment for the execution of the kernel program. The setup function initializes and
configures hardware devices, such as the keyboard, video card, disk controller, and floating
point unit.

2. The kernel is loaded into memory, and if its a compressed image, it is decompressed.

Version 1.4 Classification: atsec public 49 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

3. The kernel calls a second start-up (e.g. startup_32 on x86) function to set the execution
environment for process 0.

4. The kernel initializes the memory management system.

5. The kernel sets the kernel mode stack for process 0.

6. The kernel initializes the provisional Page Tables and enables paging.

7. The kernel sets up the exception handlers.

8. start_kernel completes the kernel initialization by initializing Page Tables, Memory
Handling Data Structures, the SLUB allocator, system date, and system time.

7.3.2.3 User Space Boot Process

After the kernel is fully initialized, the user space is started up. There are the following two phases
covering the boot process:

• initramfs: This state is intended to perform any initialization work to make the root file
system available, such as loading kernel modules with special drivers needed to access the
non-volatile storage holding the root file system.

• systemd: This state initializes the entire user space by loading applications and daemons and
performs any setup and configuration process necessary to get the system into the
operational state.

Both phases are invoked by the Linux kernel where the kernel code uses the execve system call on a
hard-coded path.

7.3.2.3.1 Initramfs

The following steps are performed to initialize the initramfs:

1. After the kernel is loaded and initialized, it locates the compressed initramfs image in
memory.

2. The Linux kernel uncompresses the image.

3. The kernel performs a loopback mount of the uncompressed initramfs image to mount it as
the root file system.

4. The kernel executes the /linuxrc or /sbin/init executable. This is a copy of systemd which
executes out of the initramfs.

5. systemd does whatever it needs to do to for setting up the system to allow accessing the root
file system based on the configuration.

6. After the systemd application terminates, the kernel unmounts the initramfs, and mounts the
root file system pointed to by the “root” kernel command line parameter.

7.3.2.3.2 Systemd

On every Unix system there is one process with the special process identifier 1. It is started by the
kernel before all other processes and is the parent process for all those other processes that have
nobody else to be child of. Due to that it can do a lot of stuff that other processes cannot do. And it
is also responsible for some things that other processes are not responsible for, such as bringing up
and maintaining userspace during boot.

50 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

systemd starts up and supervises the entire system. It is based around the notion of units. In
systemd, a unit refers to a resource that is managed. Each resource is defined by a configuration file
called a unit file. Example: a unit avahi.service is the unit file for the Avahi daemon. Units are
categorized by the type of their resource. The suffix portion of the unit's file name is the type. The
following types are:

• service: these are the most obvious kind of unit: daemons that can be started, stopped,
restarted, reloaded. For compatibility with SysV systemd not only supports its own
configuration files for services, but also are able to read classic SysV init scripts, in
particular we parse the LSB header, if it exists. /etc/init.d is hence not much more than just
another source of configuration.

• socket: this unit encapsulates a socket in the file-system or on the Internet. systemd currently
supports AF_INET, AF_INET6, AF_UNIX sockets of the types stream, datagram, and
sequential packet. In addition, it also supports classic FIFOs as transport. Each socket unit
has a matching service unit, that is started if the first connection comes in on the socket or
FIFO. Example: nscd.socket starts nscd.service on an incoming connection.

• device: this unit encapsulates a device in the Linux device tree. If a device is marked for this
via udev rules, it will be exposed as a device unit in systemd. Properties set with udev can be
used as configuration source to set dependencies for device units.

• mount: this unit encapsulates a mount point in the file system hierarchy. systemd monitors
all mount points how they come and go, and can also be used to mount or unmount mount-
points. /etc/fstab is used here as an additional configuration source for these mount points,
similar to how SysV init scripts can be used as additional configuration source for service
units.

• automount: this unit type encapsulates an automount point in the file system hierarchy. Each
automount unit has a matching mount unit, which is started (i.e. mounted) as soon as the
automount directory is accessed.

• target: this unit type is used for logical grouping of units: instead of actually doing anything
by itself it simply references other units, which thereby can be controlled together. Examples
for this are: multi-user.target, which is a target that basically plays the role of run-level 5 on
classic SysV system, or bluetooth.target which is requested as soon as a bluetooth dongle
becomes available and which simply pulls in bluetooth related services that otherwise would
not need to be started: bluetoothd and obexd and suchlike.

• swap: A unit configuration file whose name ends in “.swap'” encodes information about a
swap device or file for memory paging controlled and supervised by systemd.

• path: A unit configuration file whose name ends in “.path'” encodes information about a path
monitored by systemd, for path-based activation.

• timer: A unit configuration file whose name ends in “.timer” encodes information about a
timer controlled and supervised by systemd, for timer-based activation.

• slice: A unit configuration file whose name ends in “.slice” encodes information about a
slice which is a concept for hierarchically managing resources of a group of processes. This
management is performed by creating a node in the Linux Control Group (cgroup) tree.
Units that manage processes (primarily scope and service units) may be assigned to a
specific slice. For each slice, certain resource limits may be set that apply to all processes of

Version 1.4 Classification: atsec public 51 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

all units contained in that slice. Slices are organized hierarchically in a tree. The name of the
slice encodes the location in the tree. The name consists of a dash-separated series of names,
which describes the path to the slice from the root slice. The root slice is named, -.slice.
Example: foo-bar.slice is a slice that is located within foo.slice, which in turn is located in
the root slice -.slice.

• scope: Scope units are not configured via unit configuration files, but are only created
programmatically using the bus interfaces of systemd. They are named similar to filenames.
A unit whose name ends in ``.scope'' refers to a scope unit. Scopes units manage a set of
system processes. Unlike service units, scope units manage externally created processes, and
do not fork off processes on its own.

All these units can have dependencies between each other (both positive and negative, i.e. 'Requires'
and 'Conflicts'): a device can have a dependency on a service, meaning that as soon as a device
becomes available a certain service is started. Mounts get an implicit dependency on the device they
are mounted from. Mounts also gets implicit dependencies to mounts that are their prefixes (i.e. a
mount /home/lennart implicitly gets a dependency added to the mount for /home) and so on.

In addition to the mentioned core functions, the following support is provided by systemd:

• For each process that is spawned, the following may be controlled: the environment,
resource limits, working and root directory, umask, OOM killer adjustment, nice level, IO
class and priority, CPU policy and priority, CPU affinity, timer slack, user id, group id,
supplementary group ids, readable/writable/inaccessible directories, shared/private/slave
mount flags, capabilities/bounding set, secure bits, CPU scheduler reset of fork, private /tmp
name-space, cgroup control for various subsystems. Also, an adminitrator can easily connect
stdin/stdout/stderr of services to syslog, /dev/kmsg, arbitrary TTYs. If connected to a TTY
for input systemd will make sure a process gets exclusive access, optionally waiting or
enforcing it.

• Every executed process gets its own cgroup (currently by default in the debug subsystem,
since that subsystem is not otherwise used and does not much more than the most basic
process grouping), and it is very easy to configure systemd to place services in cgroups that
have been configured externally, for example via the libcgroups utilities.

• The native configuration files use a syntax that closely follows the well-known .desktop
files. It is a simple syntax for which parsers exist already in many software frameworks.

• As mentioned, systemd provides compatibility with SysV init scripts. systemd takes
advantages of LSB and Red Hat chkconfig headers if they are available. If they are not
available, ssystemd tries to make the best of the otherwise available information, such as the
start priorities in /etc/rc.d. These init scripts are simply considered a different source of
configuration, hence an easy upgrade path to proper systemd services is available.
Optionally systemd can read classic PID files for services to identify the main pid of a
daemon. Note that systemd makes use of the dependency information from the LSB init
script headers, and translate those into native systemd dependencies.

• Similarly, systemd reads the existing /etc/fstab configuration file, and consider it just another
source of configuration. Using the comment= fstab option you can even mark /etc/fstab
entries to become systemd controlled automount points.

52 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

• If the same unit is configured in multiple configuration sources (e.g.
/etc/systemd/system/avahi.service exists, and /etc/init.d/avahi too), then the native
configuration will always take precedence, the legacy format is ignored, allowing an easy
upgrade path and packages to carry both a SysV init script and a systemd service file for a
while.

• Systemd supports a simple templating/instance mechanism. Example: instead of having six
configuration files for six gettys, systemd only has one getty@.service file which gets
instantiated to getty@tty2.service and suchlike. The interface part can even be inherited by
dependency expressions, i.e. it is easy to encode that a service dhcpcd@eth0.service pulls in
avahi-autoipd@eth0.service, while leaving the eth0 string wild-carded.

• For socket activation systemd supports full compatibility with the traditional inetd modes, as
well as a very simple mode that tries to mimic launchd socket activation and is
recommended for new services. The inetd mode only allows passing one socket to the
started daemon, while the native mode supports passing arbitrary numbers of file
descriptors. Systemd also supports one instance per connection, as well as one instance for
all connections modes. In the former mode systemd names the cgroup the daemon will be
started in after the connection parameters, and utilize the templating logic mentioned above
for this. Example: sshd.socket might spawn services sshd@192.168.0.1-4711-192.168.0.2-
22.service with a cgroup of sshd@.service/192.168.0.1-4711-192.168.0.2-22 (i.e. the IP
address and port numbers are used in the instance names. For AF_UNIX sockets we use PID
and user id of the connecting client). This provides a nice way for the administrator to
identify the various instances of a daemon and control their runtime individually. The native
socket passing mode is very easily implementable in applications: if $LISTEN_FDS is set it
contains the number of sockets passed and the daemon will find them sorted as listed in
the .service file, starting from file descriptor 3 (a nicely written daemon could also use fstat()
and getsockname() to identify the sockets in case it receives more than one). In addition
systemd sets $LISTEN_PID to the PID of the daemon that shall receive the file descriptors,
because environment variables are normally inherited by sub-processes and hence could
confuse processes further down the chain.

• Systemd provides compatibility with /dev/initctl to a certain extent. This compatibility is in
fact implemented with a FIFO-activated service, which simply translates these legacy
requests to D-Bus requests. Effectively this means the old shutdown, poweroff and similar
commands from Upstart and sysvinit continue to work with systemd.

• Systemd also provides compatibility with utmp and wtmp.

• Systemd supports several kinds of dependencies between units. After/Before can be used to
fix the ordering how units are activated. It is completely orthogonal to Requires and Wants,
which express a positive requirement dependency, either mandatory, or optional. Then, there
is Conflicts which expresses a negative requirement dependency. Finally, there are three
further, less used dependency types.

• Systemd has a minimal transaction system. Meaning: if a unit is requested to start up or shut
down we will add it and all its dependencies to a temporary transaction. Then, systemd will
verify if the transaction is consistent (i.e. whether the ordering via After/Before of all units is
cycle-free). If it is not, systemd will try to fix it up, and removes non-essential jobs from the
transaction that might remove the loop. Also, systemd tries to suppress non-essential jobs in
the transaction that would stop a running service. Non-essential jobs are those which the

Version 1.4 Classification: atsec public 53 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

original request did not directly include but which where pulled in by Wants type of
dependencies. Finally systemd checks whether the jobs of the transaction contradict jobs that
have already been queued, and optionally the transaction is aborted then. If all worked out
and the transaction is consistent and minimized in its impact it is merged with all already
outstanding jobs and added to the run queue. Effectively this means that before executing a
requested operation, systemd will verify that it makes sense, fixing it if possible, and only
failing if it really cannot work.

• Systemd records start/exit time as well as the PID and exit status of every process systemd
spawns and supervises. This data can be used to cross-link daemons with their data in abrtd,
auditd and syslog. Think of an UI that will highlight crashed daemons, and allows to easily
navigate to the respective UIs for syslog, abrt, and auditd that will show the data generated
from and for this daemon on a specific run.

• Systemd supports re-execution of the init process itself at any time. The daemon state is
serialized before the re-execution and de-serialized afterwards. That way systemd provides a
simple way to facilitate init system upgrades as well as handover from an initramfs daemon
to the final daemon. Open sockets and autofs mounts are properly serialized away, so that
they stay connectible all the time, in a way that clients will not even notice that the init
system re-executed itself. Also, the fact that a big part of the service state is encoded anyway
in the cgroup virtual file system would even allow systemd to resume execution without
access to the serialization data. The re-execution code paths are actually mostly the same as
the init system configuration reloading code paths, which guarantees that re-execution
(which is probably more seldom triggered) gets similar testing as reloading (which is
probably more common).

• Systemd re-implements parts of the basic system setup in C and moved it directly into
systemd. The historic start scripts are not available any more. Among that is mounting of the
API file systems (i.e. virtual file systems such as /proc, /sys and /dev.) and setting of the
host-name.

• Server state is introspectable and controllable via D-Bus.

• While systemd emphasizes socket-based and bus-name-based activation, and systemd hence
supports dependencies between sockets and services, systemd also supports traditional inter-
service dependencies. Systemd supports multiple ways how such a service can signal its
readiness: by forking and having the start process exit (i.e. traditional daemonize()
behaviour), as well as by watching the bus until a configured service name appears.

• There's an interactive mode which asks for confirmation each time a process is spawned by
systemd. This may be enabled by passing systemd.confirm_spawn=1 on the kernel
command line.

• With the systemd.default= kernel command line parameter administrators can specify which
unit systemd should start on boot-up. Normally administrators specify something like multi-
user.target here, but another choice could even be a single service instead of a target, for
example out-of-the-box systemd ships a service emergency.service that is similar in its
usefulness as init=/bin/bash, however has the advantage of actually running the init system,
hence offering the option to boot up the full system from the emergency shell.

After explanation of systemd, a look at the generic boot sequence after the initramfs operation is
finished is given. The kernel has mounted the root file system which hosts /sbin/init – note that this

54 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

init application is implemented with the systemd framework. This application is the driver of the
user space boot process.

The kernel executes /sbin/init which finalizes the boot sequence implemented in the kernel.

1. Before executing the /sbin/init application, it resets the pid table to assign process ID one to
the init process.

2. systemd is an event-driven system as described in systemd(8).

3. The boot process driven by systemd is purely based on events. If one event is observed, all
tasks associated with that event are executed in parallel. The implemented boot sequence
with all events is outlined in bootup(7). The boot process covers the following aspects:

1. Mounts the /proc special file system.

2. Mounts the /dev/pts special file system.

3. Generate the /etc/nologin file early in the boot process.

4. Saves and restores the system entropy tool for higher quality random number
generation.

5. Configures network interfaces.

6. Starts the system logging daemons.

7. Starts the sshd daemon.

8. Starts the cron daemon.

9. Probes hardware for setup and configuration.

10.Removes the /etc/nologin file late in the boot process.

For more detail about services started at run level 3, refer to the scripts in
/etc/rc.d/rc3.d or /etc/rc3.d on a Linux system.

7.3.3 Secure Boot Support1

The Unified Extensible Firmware Interface (UEFI) Secure Boot technology ensures that the system
firmware checks whether the system boot loader is signed with a cryptographic key authorized by a
database of public keys contained in the firmware. With signature verification in the next-stage boot
loader and kernel, it is possible to prevent the execution of kernel space code which has not been
signed by a trusted key.

A chain of trust is established from the firmware to the signed drivers and kernel modules as
follows. The first-stage boot loader, shim.efi, is signed by a UEFI private key and authenticated by a
public key, signed by a certificate authority (CA), stored in the firmware database. The shim.efi
contains the Oracle public key, “Oracle Secure Boot (CA key 1)”, which is used to authenticate both
the GRUB 2 boot loader, grubx64.efi, and the Oracle kernel. The kernel in turn contains public keys
to authenticate drivers and modules.

Secure Boot is the boot path validation component of the Unified Extensible Firmware Interface
(UEFI) specification. The specification defines:

1 This section has been derived from https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/
html/System_Administrators_Guide/sec-UEFI_Secure_Boot.html

Version 1.4 Classification: atsec public 55 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

• a programming interface for cryptographically protected UEFI variables in non-volatile
storage,

• how the trusted X.509 root certificates are stored in UEFI variables,

• validation of UEFI applications like boot loaders and drivers,

• procedures to revoke known-bad certificates and application hashes.

UEFI Secure Boot does not prevent the installation or removal of second-stage boot loaders, nor
require explicit user confirmation of such changes. Signatures are verified during booting, not when
the boot loader is installed or updated. Therefore, UEFI Secure Boot does not stop boot path
manipulations, it helps in the detection of unauthorized changes. A new boot loader or kernel will
work as long as it is signed by a key trusted by the system.

7.3.3.1 UEFI Secure Boot Support

Oracle Linux 7 includes support for the UEFI Secure Boot feature, which means that Oracle Linux
7 can be installed and run on systems where UEFI Secure Boot is enabled. On UEFI-based systems
with the Secure Boot technology enabled, all drivers that are loaded must be signed with a trusted
key, otherwise the system will not accept them. All drivers provided by Oracle are signed by one of
Oracle's private keys and authenticated by the corresponding Oracle public key in the kernel.

As UEFI Secure Boot support in Oracle Linux 7 is designed to ensure that the system only runs
kernel mode code after its signature has been properly authenticated, certain restrictions exist.

GRUB 2 module loading is disabled as there is no infrastructure for signing and verification of
GRUB 2 modules, which means allowing them to be loaded would constitute execution of untrusted
code inside the security perimeter that Secure Boot defines. Instead, Oracle provides a signed
GRUB 2 binary that has all the modules supported on Oracle Enterprise Linux 7 already included.

7.3.4 Trusted Installation and Update

The TOE software is delivered and installed using “Red Hat Packages” (RPMs). These packages are
archives of files and contain meta data to allow managing these packages.

As part of the RPM meta data, a signature of the entire RPM file is provided. During installation of
an RPM, this signature is verified with an Oracle controlled certificate deployed on the system
during installation time. Only if the signature verification is successful, an RPM package is
installed. Otherwise it is rejected and not installed.

To ensure that the integrity and authenticity verification enforced by the TOE for individual RPM
packages is appropriate, the administrator must ensure that the installation media originates from
Oracle. This is performed by downloading the installation media and verifying its integrity and
authenticity using signatures and hashes as outlined by the Oracle download server.

Additional software as well as updates are deployed using RPMs. These RPMs originate from
Oracle as only Oracle is able to create the signature. However, as each RPM is signed individually,
the RPMs can be stored on arbitrary mirror servers which are not under the control of either Oracle
or the administrator of the TOE.

Oracle servers distribute update lists pointing to RPMs on a regular basis. These lists indicate
whether update RPMs are available. These lists are signed by Oracle as well. However, to prevent
rollback attacks, these lists are fetched from Oracle servers by the TOE.

56 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

The TOE pulls the latest update lists from Oracle servers nightly and either installs new RPMs
automatically or informs the administrator about the presence of update RPMs, depending on the
system configuration.

Updates are provided on a quarterly basis and can be reviewed at the Oracle Linux patch website. In
case of critical security patches, these patches are published as soon as they become available. Upon
availability of these patches, the aforementioned update list is refreshed to allow Oracle Linux to
automatically pull this new information.

All security related issues (published) which are flagged as Critical or High based on CVSS ratings
should be publicly available within 24 hours of the fix being finalized (including testing). Oracle
utilizes CVSS 3.0 specification for scoring CVEs. All other security errata (with severity lower than
high) will be evaluated for the next platform release window and prioritized by severity and risk:

• Kernel - quarterly release process for UEK so prioritized will be included in quarterly
release. Low risk, low score, may wait to be included in the next major release.

• In addition, there is also a monthly errata for UEK where pending high level security issues
can be consolidated.

7.4 Security Management

The security management facilities provided by the TOE are usable by authorized users and/or
authorized administrators to modify the configuration of TSF. The configuration of TSF are hosted
in the following locations:

• Configuration files (or TSF databases)

• Data structures maintained by the kernel and within the kernel memory

The TOE provides applications to authorized users as well as authorized administrators to perform
various administrative tasks. These applications are documented as part of the administrator and
user guidance. These applications are either used to modify configuration files or to access
parameters controlled and enforced by the kernel via kernel-provided interfaces to user space.

Configuration options are stored in different configuration files. These files are protected using the
DAC mechanisms against unauthorized access where usually the root user only is allowed to write
to the files. In some special cases (like for /etc/shadow), the file is even readable to the root user
only. It is the task of the persons responsible for setting up and administrating the system to ensure
that the access control features of the TOE are used throughout the lifetime of the system to protect
those databases. These configuration files are accessed using applications which are able to interpret
the contents of these configuration files. Each TOE instance maintains its own TSF database.
Synchronizing those databases is not performed in the evaluated configuration. If such
synchronization is required by an organization it is the responsibility of an administrative user of
the TOE to achieve this either manually or with some automated assistance.

To access data structures maintained by the kernel, applications use the kernel-provided interfaces,
such as system calls, virtual file systems, netlink sockets, and device files. These kernel interfaces
are restricted to authorized administrators or authorized users, if applicable, by either using DAC
(for virtual file system objects) or special kernel-internal verification checks for each interface.

All management activities are restricted to the root user. Administrative users assigned to the
“wheel” group are eligible to switch to the root user to perform administrative actions using the

Version 1.4 Classification: atsec public 57 of 82
 Copyright © 2019 by Oracle and atsec

https://www.oracle.com/technetwork/topics/security/alerts-086861.html

TOE Summary Specification Security Target for Oracle Linux 7.3

sudo application. Therefore, those users are defined to be administrators. This covers all
management functions for the mechanisms specified in this chapter.

The following listing enumerates the directories containing security relevant data:

• /etc: System-wide configuration files are stored here.

• /lib, /lib64, /usr/lib and /usr/lib64 contains shared libraries

• /lib/modules: Kernel modules and device drivers are located in this director.

• /var/log/audit: Audit data is stored in this directory.

• /bin, /sbin, /usr/bin, and /usr/sbin contains executables.

• /dev/ contains all device-related interfaces.

7.4.1 Privileges

Privileges to perform administrative actions are maintained by the TOE. These privileges are
separated into privileges to act on data or access functionality in user space and in kernel space.

Functionality accessible in user space are applications that can be invoked by users. Also, data
accessible in user space is either data maintained with an application or data stored in persistent or
transient storage objects. Privileges are controlled by permissions to invoke applications and to
access data. For example, the configuration files including the user databases of /etc/passwd and
/etc/shadow are accessible to the root user only. Therefore, the root user is given the privilege to
perform modifications on this configuration data which constitutes administrative actions.

Functionality and data maintained by the kernel must be accessed using system calls. The kernel
implements a privilege check for functions and data that shall not be accessible by normal users.
These privileges are controlled with capabilities that can be assigned to processes. If a process is
assigned with a capability, it is allowed to request special operations that other processes cannot. To
implement consistency with the Unix legacy, processes with the effective UID of zero are implicitly
given all capabilities. However, these processes may decide to drop capabilities. Such capabilities
are marked by names with the prefix of "CAP_" throughout this document. The Linux kernel
implements many more capabilities than mentioned in this document. These unmentioned
capabilities protect functions that do not directly cover SFR functionality but need to be protected to
ensure the integrity of the system and its resources.

7.5 Audit Data Generation

The Lightweight Audit Framework (LAF) is designed to be an audit system for Linux compliant
with the requirements from Common Criteria. LAF is able to intercept all system calls as well as
retrieving audit log entries from privileged user space applications. The subsystem allows
configuring the events to be actually audited from the set of all events that are possible to be
audited. Those events are configured in a specific configuration file and then the kernel is notified
to build its own internal structure for the events to be audited.

7.5.1 Audit Functionality

The Linux kernel implements the core of the LAF functionality. It gathers all audit events, analyzes
these events based on the audit rules and forwards the audit events that are requested to be audited
to the audit daemon executing in user space.

58 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

Audit events are generated in various places of the kernel. In addition, a user space application can
create audit records which needs to be fed to the kernel for further processing.

The audit functionality of the Linux kernel is configured by user space applications which
communicate with the kernel using a specific netlink communication channel. This netlink channel
is also to be used by applications that want to send an audit event to the kernel.

The kernel netlink interface is usable only by applications possessing the following capabilities:

• CAP_AUDIT_CONTROL: Performing management operations like adding or deleting
audit rules, setting or getting auditing parameters;

• CAP_AUDIT_WRITE: Submitting audit records to the kernel which in turn forwards the
audit records to the audit daemon.

Based on the audit rules, the kernel decides whether an audit event is discarded or to be sent to the
user space audit daemon for storing it in the audit trail. The kernel sends the message to the audit
daemon again using the above mentioned netlink communication channel. The audit daemon writes
the audit records to the audit trail. An internal queuing mechanism is used for this purpose. When
the queue does not have sufficient space to hold an audit record the TOE switches into single user
mode, is halted or the audit daemon executes an administrator-specified notification action
depending on the configuration of the audit daemon. This ensures that audit records do not get lost
due to resource shortage and the administrator can backup and clear the audit trail to free disk space
for new audit logs.

Access to audit data by normal users is prohibited by the discretionary access control function of the
TOE, which is used to restrict the access to the audit trail and audit configuration files to the system
administrator only.

The system administrator can define the events to be audited from the overall events that the
Lightweight Audit Framework using simple filter expressions. This allows for a flexible definition
of the events to be audited and the conditions under which events are audited. The system
administrator is also able to define a set of user IDs for which auditing is active or alternatively a set
of user IDs that are not audited.

The system administrator can select the audited events. Individual files can be configured to be
audited by adding them to a watch list that is loaded into the kernel. In addition, audit rules can be
specified to generate audit data based on a large number of different attributes, including:

• Subject or user identifiers

• Result of the operation (success/failure)

• Object identity

• Operation performed on an object

• System call number

The complete list of auditable operations can be obtained from the auditctl(8) man page.

The audit system can be configured to take actions if the audit trail is full or reaches a given
theshold of disk space. The actions that can be configured include a halting of the system,
preventing further auditable actions, notifications to an administrator or the execution of a
configured command.

Version 1.4 Classification: atsec public 59 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

The TOE provides a management application that uses the aforementioned netlink interface. This
application is used during boot time to load the audit rules from the configuration file
/etc/audit/audit.rules. The audit rules can be modified at runtime of the system.

7.5.2 Audit Trail

An audit record consists of one or more lines of text containing fields in a “keyword=value” tagged
format. The following information is contained in all audit record lines:

• Type: indicates the source of the event, such as SYSCALL, PATH, USER_LOGIN, or
LOGIN

• Timestamp: Date and time the audit record was generated

• Audit ID: unique numerical event identifier

• Login ID (“auid”), the user ID of the user authenticated by the system (regardless if the user
has changed his real and / or effective user ID afterwards)

• Effective user and group ID: the effective user and group ID of the process at the time the
audit event was generated

• Success or failure (where appropriate)

• Process ID of the subject that caused the event (PID)

• Hostname or terminal the subject used for performing the operation

• Information about the intended operation

This information is followed by event specific data. In some cases, such as SYSCALL event records
involving file system objects, multiple text lines will be generated for a single event, these all have
the same time stamp and audit ID to permit easy correlation.

The audit trail is stored in ASCII text. The TOE provides tools for managing ASCII files that can be
used for post-processing of audit data. The application ausearch allows selective extraction of
records from the audit trail using defined selection criteria. Using the ausearch, the administrator is
able to select the information he wants to review. The tools allow the specification of a fine-grained
search pattern where each information component can be searched for, including combinations of
these patterns.

The audit trail is stored in files which are accessible by root only. If the audit trail fills up and
reaches a warning threshold the administrator is notified about reaching the configured level. If the
audit trail is full, the audit daemon rejects fetching new audit logs from the kernel to store them into
a file. The kernel buffer holding audit messages fills up. When the kernel audit message buffer is
full, the kernel suspends every subject that triggered an auditable event until the buffer is cleared
again. This way, operations causing auditable events are prevented. In addition, the audit daemon
can inform the administrator about the full audit trail, can switch to single user mode or halt the
system, depending on the configuration.

60 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

7.5.3 Audit Subsystem Implementation

An auditing facility records information about actions that may affect the security of a computer
system. In particular, an auditing facility records any action by any user that may represent a breach
of system security. For each action, the auditing facility records enough information about those
actions to verify the following:

• The user who performed the action

• The kernel object on which the action was performed

• The exact date and time it was performed

• The success or failure of the action

• The identity of the object involved

The TOE includes a comprehensive audit framework called Linux Audit Framework (LAF), which
is composed of user-space and kernel-space components. The framework records security events in
the form of an audit trail and provides tools for an administrative user. These tools enable the
administrator to configure the subsystem and to search for particular audit records, providing the
administrator with the ability to identify attempted and realized violations of the system’s security
policy.

This section describes the design and operation of the audit subsystem at a high level.

7.5.3.1 Audit Components

The following figure illustrates the various components that make up the audit framework and how
they interact with each other. In general, there are user-space components and kernel-space
components that use a netlink socket for communication. Whenever a security event of interest
occurs, the kernel queues a record describing the event and its result to the netlink socket. If
listening to the netlink, the audit daemon, auditd, reads the record and writes it to the audit log.

Version 1.4 Classification: atsec public 61 of 82
 Copyright © 2019 by Oracle and atsec

Figure 3: Audit Framework

TOE Summary Specification Security Target for Oracle Linux 7.3

This section describes the various components of the audit subsystem, starting with the kernel
components and then followed by the user-level components.

7.5.3.2 Kernel-Userspace Interface

On top of netlink, there exists the generic netlink family that provides simplified access for less
demanding users. This introduces a control for ID management and name resolution, and possesses
a new type of safety interface for netlink messages and attributes handling. This interface also
features simplified message constructing, validation capabilities, and documentation.

This mechanism also receives user-space commands to control the operation of the audit framework
and to set the audit filter rules and file system watch points.

When user space applications want to generate an audit entry, they also have to use the netlink
interface to send the message to the kernel.

The kernel checks the effective capabilities of the sender process. If the sender does not possess the
right capability (CAP_AUDIT_WRITE), the netlink message is discarded.

As outlined above, the kernel sends the completely formatted audit entry to the audit daemon for
storage. The interface the kernel uses is also the same netlink mechanism. However, how does the
kernel know to which process it has to send the message to? During startup time, the audit daemon
opens the netlink socket and sends a specific control message with its PID to the kernel. That
control message registers the PID with the kernel-internal audit mechanisms. From the time of the
registering on, this PID is used as the receiver of kernel messages.

7.5.3.3 Task Structure Extensions for Audit

The audit subsystem extends the task structure to potentially include an audit context. By default,
on task creation, the audit context is built, unless specifically denied by the per-task filter rules.
Then, during system calls, the audit context data is filled. The audit subsystem further extends the
audit context to allow for more auxiliary audit information, which might be needed for specific
audit events.

The following fields are part of the audit context:

• Login ID: Login ID is the user ID of the logged-in user. It remains unchanged through the
setuid or seteuid system calls. Login ID is required to irrefutably associate a user with that
user’s actions, even across su(8) calls or use of SUID binaries. The Login ID is set by
writing the ID to /proc/<PID>/loginuid, which is performed during login time with the
pam_loginuid.so module. The loginuid file is only writable by root and is readable by
everyone. The /proc file system triggers the kernel function audit_set_loginuid to set the
login uid for the user in the audit context. From then on, this login uid is maintained
throughout the session to trace back all operations done in the session to the login user.

• state: State represents the audit state that controls the creation of per-task audit context and
filling of system call specifics in the audit context. It can take the following values:

◦ AUDIT_DISABLED: Do not create per-task audit_context. No syscall-specific audit
records will be generated for the task.

◦ AUDIT_SETUP_CONTEXT: Create the per-task audit_context, but don't necessarily fill
it in a syscall entry time (i.e., filter instead).

62 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

◦ AUDIT_BUILD_CONTEXT: Create the per-task audit_context, and always fill it in at
syscall entry time. This makes a full syscall record available if some other part of the
kernel decides it should be recorded.

◦ AUDIT_RECORD_CONTEXT: Create the per-task audit_context, always fill it in at
syscall entry time, and always write out the audit record at syscall exit time.

• in_syscall: States whether the process is running in a syscall versus in an interrupt.

• serial: A unique number that helps identify a particular audit record.Along with ctime, it can
determine which pieces belong to the same audit record. The (timestamp, serial) tuple is
unique for each syscall and it lives from syscall entry to syscall exit.

• ctime: Time at system call entry

• major: System call number

• argv array: The first 4 arguments of the system call.

• name_count: Number of names. The maximum defined is 20.

• audit_names: An array of audit_names structure which holds the data process copied by
getname.

• auditable: This field is set to 1 if the audit_context needs to be written on syscall exit.

• pwd: Current working directory from where the task has started.

• pwdmnt: Current working directory mount point. Pwdmnt and pwd are used to set the cwd
field of FS_WATCH audit record type.

• aux: A pointer to auxiliary data structure to be used for event specific audit information.

• pid: Process ID.

• arch: The machine architecture.

• personality: The OS personality number.

• Other fields: The audit context also holds the various user and group real, effective, user and
file system id’s: uid, euid, suid, fsuid, gid, egid, sgid, fsgid.

• security: An LSM can register its information pertaining its access control rules regarding a
process in this void pointer. For SELinux / AppArmor this field returns the label
information.

7.5.3.4 System Call Auditing

The audit framework is hooked into the system call glue code of the kernel which is part of the
system call interrupt handling routine. Every time a system call is called by a process, the following
two states are triggered by the system call glue code:

1. Upon entering the kernel realm but before the actual function implementing the invoked
system call is called, a callback to the audit framework is made (audit_syscall_entry). This
callback first verifies whether the system call is to be audited based on the audit rules. If it
determines that the system call is to be audited, it retrieves the system call number, converts
the arguments to an ASCII string to store them with the audit trail and obtains other
information like the caller PID and its IDs.

Version 1.4 Classification: atsec public 63 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

2. After the function implementing the invoked system call completes, but before control is
returned to user space, another audit hook (audit_syscall_exit) is called by the system call
glue code. This hook code verifies whether there is data generated in step 1. If so, it receives
the return code of the system call, stores it together with the initial information to complete
the audit entry. This audit entry is now forwarded to the audit daemon via the netlink
interface.

To bridge the gap between step one and two, the kernel audit framework uses the audit context
registered with the task_struct. This audit context data structure is filled with the information
obtained in step 1.

If an architecture implements the system call handling as a kernel-internal thread, the kernel must
expect the possibility that the same process can issue another system call before the first is
completed. In this case, the kernel uses the audit context pointer of the data structure and generates
a double linked list with the pointer to the latest audit context structure as the head of the list. This
list is walked during step 2 to find the right entry and merge the exit audit data with the right entry
information.

7.5.3.5 Socket call and IPC audit record generation

Some system calls pass an argument to the kernel specifying which function the system call is
requesting from the kernel. These system calls request multiple services from the kernel through a
single entry point. For example, the first argument to the ipc call specifies whether the request is for
semaphore operation, shared memory operation, and so forth. In the same manner, the socketcall
system call is a common kernel entry point for the socket system calls. The socketcall and the ipc
call are extended to audit the arguments and therefore audit the exact service being performed.
Following is a typical flow:

1. The kernel encounters a socket or ipc call.

2. The kernel invokes an audit framework function to collect appropriate data to be used in the
auxiliary audit context.

3. The call is processed.

4. On exit the audit record that includes the auxiliary audit information is placed on the netlink.

7.5.3.6 Filesystem auditing

File system auditing is implemented using of the inotify kernel file modification notification
system. The audit_init kernel audit subsystem initialization routine registers a vector of inotify
operations using the inotify_init function. The operations vector contains the audit_handle_ievent
audit subsystem inotify event notification function and the audit_free_parent audit subsystem
inotify destroy function. The audit subsystem inotify handle is returned by a successful audit_init
call. When audit inotify events occur, audit_handle_ievent updates audit context inode data to
reflect changes in watched file status.

When the audit subsystem receives an instruction from auditctl to set a watch on a file system
object, the audit_recieve_skb function receives the netlink packet in the kernel. It in turn calls
audit_receive_message, which dispatches the appropriate function based upon the operation
requested. For audit rule updates, it calls audit_receive_filter. The audit_receive_filter routine calls
audit_data_to_entry, which converts the audit data to a watch and calls audit_to_watch to initialize
the audit watch data structure, and then calls audit_add_rule. The audit add_rule_function adds the

64 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

inotify watch for the watch rule by calling audit_add_watch, which scans the list of active audit
inotify watch parents and adds the parent if it does not already exist by calling audit_init_parent.
The audit_init_parent function calls inotify_init_watch and inotify_add_watch to initialize the
inotify watch and register it with the inotify subsystem. It finally adds the watch to the parent by
calling the audit_add_to_parent function, which associates the watch rule with the watch parent.

When a filesystem object the audit subsystem is watching changes, the inotify subsystem calls the
audit_handle_ievent function. audit_handle_ievent in turn updates the audit subsystem's watch data
for the watched entity.

Permission changes, as well as access and modification of the object security attributes chown,
chmod, setxattr, and removexattr, are audited by audit_inode hooks inserted into the system calls.
The hooks directly update the inode information in the audit context.

When a watched object is accessed by a system call, the audit subsystem's information about the
inode and its watches is updated. A typical sequence of file system operations that generates audit
records for a watched object follows these steps:

1. A system call is entered.

2. The system call modifies a watched file's inode information, triggering an inotify event that
calls the audit_handle_ievent function with the inotify watch event information, which
updates the audit context's inode information. In certain cases, a hooked system call updates
the audit context's inode information.

3. At syscall exit, audit_log_exit detects the updated inode information in the audit context and
emits PATH and SYSCALL records for the watch event via the audit netlink interface.

7.5.3.7 Auditing of other kernel actions

In addition to the auditing of system calls and file system objects, the audit mechanism inside the
kernel provides service functions for any other functional area inside the kernel. These service
functions can be used to generate an audit entry with arbitrary contents. That audit entry is
forwarded, like any other audit entry, to the auditd daemon for storage.

7.5.3.8 Kernel audit initialization

At kernel startup four lists are created to hold the filter rules. One list is checked at task creation,
another is checked at syscall entry time, the third is checked at syscall exit time, and the fourth is
used to filter user messages. These lists hold the filter rules set by user-space components. Multiple
variables are used to control the operation of audit.

During boot time, the audit enabled flag is set according to audit_default or to the boot parameter
audit. No syscall or file system auditing takes place without audit_enabled being set to true.

The file system auditing is initialized by creating the watch lists and the hash table for the file
system auditing.

7.5.3.9 Audit Record Format

Each audit record consists of the type of record, a time stamp, login ID, and process ID, along with
variable audit data depending on the audit record type. In other words, the record depends on the
audit event. Since audit records are written to user-space as soon as they are generated, a complete
audit record might be written in several pieces. A time stamp and a serial number pair identify the

Version 1.4 Classification: atsec public 65 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

various pieces of the audit records. The timestamp of the record and the serial number are used by
the user-space daemon to determine which pieces belong to the same audit record. The tuple is
unique for each syscall and lasts from syscall entry to syscall exit. The tuple is composed of the
timestamp and the serial number.

Each audit record for system calls contains the system call return code, which indicates if the call
was successful or not. The following table lists security-relevant events for which an audit record is
generated on the TOE.

Event description LAF audit events

Startup and shutdown of audit functions DAEMON_START, DAEMON_END,
generated by auditd

Modification of audit configuration file DAEMON_CONFIG,
DAEMON_RECONFIG generated by auditd.
Syscalls open, link, unlink, rename, truncate,
(write access to configuration files)

Successful and unsuccessful file read/write Syscall open

Audit storage space exceeds a threshold Space_left_action, admin_space_left_action
configuration parameters for auditd.

Audit storage space failure Disk_full_action, disk_error_action
configuration parameters for auditd.

Operation on file system objects and IPC objects system calls accessing the objects

Rejection or acceptance by the TSF of any tested
secret.

Audit record type: USER_AUTH from PAM
Framework and audit record type:
USER_CHAUTHTOK

Use of identification and authentication
mechanism

Audit record type: USER_AUTH,
USER_CHAUTHTOK from PAM framework.

Success and failure of binding user security
attributes to a subject (e.g. success and failure to
create a subject)

Audit record type: LOGIN from pam_login.so
module. Syscalls: fork and clone.

All modification of subject security values Syscalls chmod, chown, setxattr, msgctl,
semctl, shmctl, removexattr, truncate

Modifications of the default setting of permissive
of restrictive rules

Syscalls umask, open

Modification of TSF data System calls to access file system objects;
audit record type: USER_CHAUTHTOK

Changes to system time Syscall settimeofday, adjtimex; execution of
hwclock and access to /dev/rtc

Table 7: LAF Audit Events

66 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

7.5.3.10 Auditing Support for OpenSSH

The OpenSSH server generates audit records for the following operations:

• The audit records contain an identifier that the sshd process generated the audit records and
therefore implicitly identifying the used communication protocol.

• Origin of the communication channel by logging the remote IP and remote port are logged.

• Indication of a success establishment of a connection is logged. Note, the absence of that log
entry indicates a failure of establishing a communication channel.

• Indication when a connection is terminated is logged.

• Authentication of a user (success and failure) including the user name is logged.

• Authentication type is logged (such as password-based or key-based authentication).

• The OpenSSH server logs cryptographic information of key exchange mechanism and the
used user or host based authentication mechanisms. In addition, the server logs when a new
ephemeral session key is established.

• If the server executes a command, this command will be logged.

7.5.3.11 Time Stamp Maintenance

The Linux kernel maintains various time stamps which has the following properties:

• Time with a resolution in seconds is available to user space. The time is obtained from the
firmware or hardware at boot time.

• Time with a nanosecond resolution since the system started.

• Time with a microsecond resolution since Epoch (01.01.1970).

The auditing mechanism uses the available time information to add a time stamp to each audit
record.

The configuration files including the auditd.conf and the audit.rules files for the audit framework
covering all management aspects are writable by the root user only.

7.6 Identification and Authentication

User identification and authentication in the TOE includes all forms of interactive login (e.g. using
the SSH protocol or log in at the local console) as well as identity changes through the su and sudo
commands. These all rely on explicit authentication information provided interactively by a user. In
addition, the key-based authentication mechanism of the OpenSSH server is another form of of
authentication.

7.6.1 PAM-based identification and authentication mechanisms

When a user possesses an identity in a system in the form of a login ID, that user has Identification.
Identification establishes user accountability and access restrictions for actions on a system.
Authentication is verification that the user’s claimed identity is valid, and is implemented through a
user password at login time.

Version 1.4 Classification: atsec public 67 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

All discretionary access-control decisions made by the kernel are based on the process’s user ID
established at login time and all mandatory access control decisions made by the kernel are based
on the process domain established through login, which make the authentication process a critical
component of a system.

The Linux system implements identification and authentication through a set of trusted programs
and protected databases. These trusted programs use an authentication infrastructure called the
Pluggable Authentication Module (PAM). PAM allows different trusted programs to follow a
consistent authentication policy. PAM provides a way to develop programs that are independent of
the authentication scheme. These programs need authentication modules to be attached to them at
run-time in order to work. Which authentication module is to be attached is dependent upon the
local system setup and is at the discretion of the local system administrator.

Linux uses a suite of libraries called the "Pluggable Authentication Modules" (PAM) that allow an
administrative user to choose how PAM-aware applications authenticate users. The TOE provides
PAM modules that implement all the security functionality to:

• Provides login control and establishing all UIDs, GIDs and login ID for a subject

• Ensure the quality of passwords

• Enforce limits for accounts (such as the number of maximum concurrent sessions allowed
for a user)

• Enforce the change of passwords after a configured time including the password quality
enforcement

• Enforcement of locking of accounts after failed login attempts.

• Restriction of the use of the root account to certain terminals

• Restriction of the use of the su and sudo commands

The login processing sets the real, file system effective and login UID as well as the real, effective,
file system GID and the set of supplemental GIDs of the subject that is created. It is of course up to
the client application usually provided by a remote system to protect the user’s entry of a password
correctly (e. g. provide only obscured feedback).

During login processing, the user is shown a banner. After successful authentication, the login time
is recorded.

When configuring the OpenSSH server, the administrator is allowed to enable SSH key-based
authentication in addition or instead of the username/password based authentication. When a user
can successfully authenticate using the SSH key-based authentication based on a private SSH key in
his possession, the TOE grants the user access.

After a successful identification and authentication, the TOE initiates a session for the user and
spawns the initial login shell as the first process the user can interact with. The TOE provides a
mechanism to lock a session either automatically after a configurable period of inactivity for that
session or upon the user's request.

The TOE ensures that the memory used for the authentication operation is cleared before the
authentication takes place. This ensures that previously entered credentials are not re-used for a new
authentication operation.

68 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

When a new user is created, a complete new entry is added to the credential database. This ensures
that previously existing credentials are not reused for the newly added user.

After successful authentication, a new process is spawned where the spawned process is identified
by the "shell" entry in the credential store (/etc/passwd). This new process is spawned with the UID
associated to the user in the credential store, In addition, the new process is spawned with the
primary GID as well as supplemental GIDs defined by the credential store for the user (/etc/group).
The capabilities are initially set as follows: if the UID of the user is 0, all capabilities are assigned to
the newly spawned process. Otherwise no capabilities are assigned.

7.6.1.1 Pluggable Authentication Module

PAM is responsible for the identification and authentication subsystem. PAM provides a centralized
mechanism for authenticating all services. PAM allows for limits on access to applications and
alternate, configurable authentication methods. For more detailed information about PAM, see the
PAM project Web site at http://www.kernel.org/pub/linux/libs/pam.

PAM consists of a set of shared library modules, which provide appropriate authentication and audit
services to an application. Applications are updated to offload their authentication and audit code to
PAM, which allows the system to enforce a consistent identification and authentication policy, as
well as to generate appropriate audit records. The following programs are enhanced to use PAM:

• login

• passwd

• su, sudo

• useradd, usermod, userdel

• groupadd, groupmod, groupdel

• sshd

• chage

• chfn

• chsh

A PAM-aware application generally goes through the following steps:

1. The application makes a call to PAM to initialize certain data structures. With the
initialization, the calling application provides a name to PAM which ultimately is used to
find the configuration file of the authentication stack configuration in /etc/pam.d/. Usually,
that name equals the application name.

2. The PAM module locates the configuration file for that application from
/etc/pam.d/application_name and obtains a list of PAM modules necessary for servicing that
application. If it cannot find an application-specific configuration file, then it uses
/etc/pam.d/other.

3. Depending on the order specified in the configuration file, PAM loads the appropriate
modules for the PAM operation requested by the calling application (i.e. PAM provides one
call back for each module type – the module type is consistent with the “auth”, “session”,
“password” and “account” sections in the PAM configuration files.

Version 1.4 Classification: atsec public 69 of 82
 Copyright © 2019 by Oracle and atsec

http://www.kernel.org/pub/linux/libs/pam

TOE Summary Specification Security Target for Oracle Linux 7.3

4. The authentication module code performs the requested operation depending on the module
type. The module may require input from the user. Note: a module may perform operations
which hardly have anything to do with authentication, but whose operations are necessary to
set up the user environment.

5. Each authentication module performs its action and relays the result back to the application.

6. The PAM library is modified to create a USER_AUTH type of audit record to note the
success or failure from the authentication module.

7. The application takes appropriate action based on the aggregate results from all
authentication modules.

7.6.1.2 PAM Modules

Linux is configured to use the following PAM modules – each PAM module used in the evaluated
configuration is accompanied by a man page that provides additional information:

• pam_unix.so Supports all four module types, and provides standard password-based
authentication. pam_unix.so uses standard calls from the system libraries to retrieve and set
account information as well as to perform authentication. Authentication information about
Linux is obtained from the /etc/passwd and /etc/shadow files. To perform the authentication,
the pam_unix module calls the unix_chkpwd helper program. This application hashes the
user-provided password with the hash algorithm specified for that user in /etc/shadow, uses
the salt stored for the user in /etc/shadow and compares the generated hash with the hash
stored in /etc/shadow for the user. If both hashes match, the user is authenticated. Otherwise,
the user is denied access.

• pam_stack.so pam_stack.so module performs normal password authentication through
recursive stacking of modules. For example, the argument service=system-auth passed to the
pam_stack.so module indicates that the user must pass through the PAM configuration for
system authentication, found in /etc/pam.d/system-auth.

• pam_passwdqc.so Performs additional password strength checks. For example, it rejects
passwords such as “1qaz2wsx” that follow a pattern on the keyboard. In addition to
checking regular passwords it offers support for passphrases and can provide randomly
generated passwords.

• pam_env.so Loads a configurable list of environment variables, and is configured with the
/etc/security/pam_env.conf file.

• pam_shells.so Authentication is granted if the user’s shell is listed in /etc/shells. If no shell is
in /etc/passwd (empty), then /bin/sh is used. It also checks to make sure that /etc/shells is a
plain file and not world-writable.

• pam_limits.so This module imposes user limits on login. It is configured using the
/etc/security/limits.conf file. No limits are imposed on UID 0 accounts.

• pam_rootok.so This module is an authentication module that performs one task: if the id of
the user is 0, then it returns PAM_SUCCESS. With the “sufficient” control flag, it can be
used to allow password-free access to some service for root.

70 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

• pam_xauth.so This module forwards xauth cookies from user to user. Primitive access
control is provided by ~/.xauth/export in the invoking user's home directory, and
~/.xauth/import in the target user's home directory.

• pam_wheel.so Returns successful if the user to be authenticated is part of the wheel group.
First, the module checks for the existence of a wheel group. Otherwise, the module defines
the group with group ID 0 to be the wheel group.

• pam_nologin.so Provides standard UNIX nologin authentication. If the /etc/nologin file
exists, only root is allowed to log in; other users are turned away with an error message (and
the module returns PAM_AUTH_ERR or PAM_USER_UNKNOWN). All users (root or
otherwise) are shown the contents of /etc/nologin.

• pam_loginuid.so Sets the audit uid for the process that was authenticated.

• pam_securetty.so Provides standard UNIX securetty checking, which causes authentication
for root to fail unless the calling program has set PAM_TTY to a string listed in the
/etc/securetty file. For all other users, pam_securetty.so succeeds.

• pam_faillock.so Keeps track of the number of login attempts made and denies access based
on the number of failed attempts, which is specified as an argument to pam_faillock.so
module. This is addressed at the “account” module type. The pam_faillock program allows
administrative users to examine and control the pam_faillock PAM module's tally file, such
as reset.

• pam_tally2.so Keeps track of the number of login attempts made and denies access based on
the number of failed attempts, which is specified as an argument to pam_tally2.so module.
This is addressed at the “account” module type. The pam_tally2 program allows
administrative users to examine and control the pam_tally2 PAM module's tally file such as
reset.

• pam_listfile.so Allows the use of ACLs based on users, ttys, remote hosts, groups, and
shells.

• pam_deny.so Always returns a failure.

• pam_cracklib.so The action of this module is to prompt the user for a password and check
its strength against a system dictionary and a set of rules for identifying poor choices. The
first action is to prompt for a single password, check its strength and then, if it is considered
strong, prompt for the password a second time (to verify that it was typed correctly on the
first occasion). All being well, the password is passed on to subsequent modules to be
installed as the new authentication token.

• pam_systemd.so pam_systemd registers user sessions with the systemd login manager
systemd-logind.service(8), and hence the systemd control group hierarchy.

7.6.1.3 User Identity Changing

When switching identities, the real, file system and effective user ID and real, file system and
effective group ID are changed to the one of the user specified in the command (after successful
authentication as this user).

Note: The login ID is not retained for the following special case:

1. User A logs into the system.

Version 1.4 Classification: atsec public 71 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

2. User A uses su to change to user B.

3. User B now edits the cron or at job queue to add new jobs. This operation is appropriately
audited with the proper login ID.

4. Now when the new jobs are executed as user B, the system does not provide the audit
information that the jobs are created by user A.

The su command invokes the common authentication mechanism to validate the supplied
authentication.

Users can change their identity (i.e., switch to another identity) using one of the following
commands provided with the TOE.

7.6.1.3.1 su command

The su command is intended for a switch to a another identity that establishes a new login session
and spawns a new shell with the new identity. When invoking su, the user must provide the
credentials associated with the target identity - i.e. when the user wants to switch to another user ID,
it has to provide the password protecting the account of the target user.

The primary use of the su command within the TOE is to allow appropriately authorized individuals
the ability to assume the root identity to perform administrative actions. In this system the capability
to login as the root identity has been restricted to defined terminals only. In addition the use of the
su command to switch to root has been restricted to users belonging to a special group. Users that
don’t have access to a terminal where root login is allowed and are not member of that special
group will not be able to switch their real, file system and effective user ID to root even if they
would know the authentication information for root. Note that when a user executes a program that
has the setuid bit set, only the effective user ID and file system ID are changed to that of the owner
of the file containing the program while the real user ID remains that of the caller. The login ID is
neither changed by the su command nor by executing a program that has the setuid or setgid bit set
as it is used for auditing purposes.

7.6.1.3.2 sudo command

The sudo command is intended for giving users permissions to execute commands with another user
identity. When invoking sudo, the user has to authenticate with this credentials.

Sudo is associated with sophisticated ruleset that can be engaged to specify which:

• source user ID

• originating from which host

• can access a command, a command with specific configuration flags, or all commands
within a directory

• with which new user identity.

7.6.2 Authentication Data Management

Each TOE instance maintains its own set of users with their passwords and attributes. Although the
same human user may have accounts on different servers interconnected by a network and running
an instantiation of the TOE, those accounts and their parameter are not synchronized on different
TOE instances. As a result the same user may have different user names, different user Ids, different

72 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

passwords and different attributes on different machines within the networked environment.
Existing mechanism for synchronizing this within the whole networked system are not subject to
this evaluation.

Each TOE instance within the network maintains its own administrative database by making all
administrative changes on the local TOE instance. System administration has to ensure that all
machines within the network are configured in accordance with the requirements defined in this
Security Target.

The file /etc/passwd contains for each user the user’s name, the id of the user, an indicator whether
the password of the user is valid, the principal group id of the user and other (not security relevant)
information. The file /etc/shadow contains for each user a hash of the user's password, the userid,
the time the password was last changed, the expiration time as well as the validity period of the
password and some other information that are not subject to the security functions as defined in this
Security Target. Users are allowed to change their passwords by using the passwd command. This
application is able to read and modify the contents of /etc/shadow for the user’s password entry,
which would ordinarily be inaccessible to a non-privileged user process. Users are also warned to
change their passwords at login time if the password will expire soon, and are prevented from
logging in if the password has expired.

The time of the last successful logins is recorded in the directory /var/log/faillock where one file per
user is kept.

The TOE displays informative banners before or during the login to users. The banners can be
specified with the files /etc/issue for log ins via the physical console or /etc/issue.net for remote log
ins, such as via SSH. When performing a log in on the physical console, the banner is displayed
above the username and password prompt. For log ins via SSH, the banner is displayed to the
remote peer during the SSH-session handshake takes place. The remote SSH client will display the
banner to the user. When using the provided OpenSSH client, the banner is displayed when the user
instructs the OpenSSH client to log into the remote system.

Users can change their own password. Only administrators can add or delete users or change their
properties.

7.6.3 SSH Key-Based Authentication

In addition to the PAM-based authentication outlined above, the OpenSSH server is able to perform
a key-based authentication. When a user wants to log on, instead of providing a password, the user
applies his SSH key. After a successful verification, the OpenSSH server considers the user as
authenticated and performs the PAM-based operations as outlined above.

To establish a key-based authentication, a user first has to generate an RSA, or ECDSA key pair.
The private part of the key pair remains on the client side. The public part is copied to the server
into the file .ssh/authorized_keys which resides in the home directory of the user he wants to log on
as. When the login operation is performed the SSHv2 protocol tries to perform the "publickey"
authentication using the private key on the client side and the public key found on the server side.
The operations performed during the publickey authentication is defined in RFC 4252 chapter 7.

Users have to protect their private key part the same way as protecting a password. Appropriate
permission settings on the file holding the private key is necessary. To strengthen the protection of
the private key, the user can encrypt the key where a password serves as key for the encryption
operation. See ssh-keygen(1) for more information.

Version 1.4 Classification: atsec public 73 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

7.6.4 Session Locking

The TOE uses the screen(1) application which locks the current session of the user either after an
administrator-specified time of inactivity or upon the user's request.

To unlock the session, the user must supply his password. Screen uses PAM to validate the
password and allows the user to access his session after a successful validation.

7.6.5 X.509 Certificate Validation

X.509 certificate validation is implemented by NSS supporting the TLS protocol.

RFC 5280 defines the X.509 certificate and validation mechanism. With the following list,
functions that are either defined optional or that are implemented differently than specified in RFC
5280 are listed. The list uses the section numbers out of RFC 5280.

RFC 5280
Reference

Description Implementation Details

4.1.1.2 Signature algorithms RSA, and ECDSA.

4.1.2.1 X.509 Version to be
supported

X.509 version 3 when generating certificates. It also
supports version 2 certificate for validation.

4.1.2.4 Supported attributes All attributes listed in the RFC are supported.

4.1.2.6 Subject field format All recommended attributes allowed for the subject
field can be processed. Comparison rules for
unfamiliar attribute types are implemented.
TelexString, BMPString, and UniversalString are not
supported.

4.1.2.8 Unique ID Support for the handling of unique identifiers.

4.2 Certificate extensions Handling of authority, subject key, and policy mapping
extensions is supported.

4.2.1.1 Public key ID The keyIdentifier field is derived from the public key.

4.2.1.2 CA subject key identifiers The keyIdentifier field is derived from the public key
which is processed by a SHA-1 hash.

4.2.1.10 Name constraints Capable of processing rfc822Name,
uniformResourceIdentifier, dNSName, and iPAddress
name forms.

4.2.1.11 Policy constraints Processing of the inhibitPolicyMapping field is
supported.

5.2.4 Delta CRL update Use of the latest value of thisUpdate when multiple
delta CRLs are received.

Table 8: X.509 Implementation Details

74 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

7.6.5.1 TLS Key-Based Authentication

When applying the bi-directional certificate validation for TLS, the TOE can be configured to verify
the certificate's distinguished name (DN).

The verification of the certificate's DN is performed after the certificate validation part of the bi-
directional certificate validation which ensures that the client certificate is trustworthy.

7.7 Trusted Path / Channel

The TOE offers different cryptographic services to protect user data. The following subsections
cover the different types of cryptographic services analyzed as part of the evaluation. Additional
cryptographic mechanisms are active in the TOE which, however, are not subject to the assessments
of this evaluation.

The TOE provides cryptographically secured network communication channels to allow remote
users to interact with the TOE. Using one of the following cryptographically secured network
channels, a user can request the following services:

• OpenSSH: The OpenSSH application provides access to the command line interface of the
TOE. Users may employ OpenSSH for interactive sessions as well as for non-interactive
sessions. The console provided via OpenSSH provides the same environment as a local
console. OpenSSH implements the SSHv2 protocol.

• NSS: The NSS library offers generic TLS communication services to protect user data using
TLS v1.1 or TLS v1.2 for protecting the communication link.

7.7.1 TLS Protocol

The TOE provides TLSv1.1 and TLSv1.2 to allow users from a remote host to establish a secure
channel to the TOE. The TOE can be configured using a bi-directional certificate verification where
the client side validates the server certificate.

The following RFCs are supported for implementing the TLS protocol: RFC 4346 (TLS 1.1) and
RFC5246 (TLS 1.2).

The TOE supports the generation of the RSA key pair used by the client. The key generation
mechanism uses the OpenSSL random number generator. The evaluated configuration also allows
the use of an externally-generated certificate. A widely accepted Certification Authority might be
used to generate and/or sign such a certificate (allowing a wide community trusting this CA to
validate the certificate). In a closed community it might also be sufficient to have one server within
the community to act as a CA. The OpenSSL library provides the functions to set up such a CA, but
those functions are not subject of this Security Target.

7.8 Secure Shell

The TOE provides the Secure Shell Protocol Version 2 (SSH v2.0) to allow users from a remote
host to establish a secure connection and perform a logon to the TOE.

The TOE supports the generation of RSA, ECDSA key pairs. These key pairs are used by OpenSSH
for the host keys as well as for the per-user keys. When a user registers his public key with the user
he wants to access on the server side, a key-based authentication can be performed instead of a

Version 1.4 Classification: atsec public 75 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

password-based authentication. The key generation mechanism uses the Linux kernel random
number generator. The evaluated configuration permits the import of externally-generated key pairs.

The TOE supports the following security functions of the SSH v2.0 protocol:

• Establishing a secure communication channel using the following cryptographic functions
provided by the SSH v2.0 protocol:

◦ Encryption as defined in section 4.3 of RFC4253 - the keys are generated using the
random number generator of the underlying cryptographic library;

◦ Diffie-Hellman key exchange as defined in section 6.1 of RFC4253

◦ The keyed hash function for integrity protection as defined in section 4.4 of RFC4253

Note: The protocol supports more cryptographic algorithms than the ones listed above.
Those other algorithms are not covered by this evaluation and should be disabled or not used
when running the evaluated configuration.

• Performing user authentication using the standard password-based authentication method
the TOE provides for users (password authentication method as defined in chapter 5 of
RFC4252).

• Performing user authentication using a RSA or ECDSA key-based authentication method
(public key authentication method as defined in chapter 5 of RFC4252).

• Checking the integrity of the messages exchanged and close down the connection in case an
integrity error is detected.

The OpenSSH applications of sshd, ssh and ssh-keygen use the OpenSSL random number generator
seeded by /dev/random or /dev/urandom to generate cryptographic keys. OpenSSL provides
different DRNGs depending whether the FIPS 140-2 mode is enabled in the system.

7.8.1 OpenSSH Implementation Details

Secure Shell (SSH) is a network protocol that provides a replacement for insecure remote login and
command execution facilities such as telnet, rlogin, and Remote Shell (RSH). SSH encrypts traffic,
preventing traffic sniffing and password theft.

On a local system, the user starts the SSH client to open a connection to a remote server running the
sshd daemon. If the user is authenticated successfully, an interactive session is initiated, allowing
the user to run commands on the remote system. SSH is not a shell in the sense of a command
interpreter, but it permits the use of a shell on the remote system.

In addition to interactive logins, the user can tunnel TCP network connections through the existing
channel, allowing the use of X11 and other network-based applications, and copy files through the
use of the scp and sftp tools. OpenSSH is configured to use the PAM framework for authentication,
authorization, account maintenance, and session maintenance. Password expiration and locking are
handled through the appropriate PAM functions.

Communication between the SSH client and SSH server uses the SSH protocol, version 2.0. The
SSH protocol requires that each host have a host-specific key. When the SSH client initiates a
connection, the keys are exchanged using the Diffie-Hellman protocol. A session key is generated,
and all traffic is encrypted using this session key and the agreed-upon algorithm.

76 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

Default encryption algorithms supported by SSH are 3DES (triple DES) and blowfish. The default
can be overridden by providing the list in the server configuration file with the “Ciphers” keyword.
The evaluated configuration will define ciphers compliant to this Security Target.

The default message authentication code algorithms supported by SSH are SHA-1 and MD5. The
default can be overridden by providing the list in the server configuration file with the keyword
MACs. The evaluated configuration will define ciphers compliant to this Security Target.

Encryption is provided by the OpenSSL package, which is a separate software package. The
following briefly describes the default SSH setup with respect to encryption, integrity check,
certificate format, and key exchange protocol.

• Encryption: A number of ciphers and block chaining modes are available with OpenSSH. A
subset is allowed in the evaluated configuration.

• Integrity check: Data integrity is protected by including a message authentication code
(MAC) with each packet that is computed from a shared secret, packet sequence number,
and the contents of the packet. The message authentication algorithm and key are negotiated
during key exchange. Initially, no MAC will be in effect, and its length must be zero. After
key exchange, the selected MAC will be computed before encryption from the
concatenation of packet data mac = MAC (key, sequence_number || unencrypted_packet)
where unencrypted_packet is the entire packet without MAC (the length fields, payload and
padding), and sequence_number is an implicit packet sequence number represented as
uint32. The sequence number is initialized to zero for the first packet, and is incremented
after every packet, regardless of whether encryption or MAC is in use. It is never reset, even
if keys or algorithms are renegotiated later. It wraps around to zero after every 232 packets.
The packet sequence number itself is not included in the packet sent over the wire.

The MAC algorithms for each direction must run independently, and implementations must
allow choosing the algorithm independently for both directions. The MAC bytes resulting
from the MAC algorithm must be transmitted without encryption as the last part of the
packet. The number of MAC bytes depends on the algorithm chosen. The default MAC
algorithm defined is the hmac-sha1 (with digest length = key length = 20 bytes).

• Certificate format: RSA (2048 bits and higher) and ECDSA (NIST P-256, NIST P-384) are
available and used as specified in FIPS 186-4. These certificates can be used for host
authentication as well as the key-based authentication of users.

• Key exchange protocol: The following key agreement protocols are available:

◦ diffie-hellman-group14-sha1: Diffie-Hellman key agreement with SHA-1 and domain
parameters of size 2048 bits defined in RFC3526

◦ diffie-hellman-group-exchange-sha1: Diffie-Hellman key agreement with SHA-1 and
domain parameters generated as defined in RFC4419 - OpenSSH provides a set of pre-
computed Diffie-Hellman domain parameters in /etc/ssh/moduli. During the SSH
protocol handshake, the client and server negotiate the domain parameter set where both
must agree on a set that is located in /etc/ssh/moduli on both sides.

◦ diffie-hellman-group-exchange-sha256: This option is identical to diffie-hellman-group-
exchange-sha1 except that it requires SHA-256 to be used.

◦ ecdh-sha2-nistp256: Elliptic Curve Diffie-Hellman key agreement with SHA-256 using
the NIST curve P-256 as defined in RFC5656

Version 1.4 Classification: atsec public 77 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

◦ ecdh-sha2-nistp384: Elliptic Curve Diffie-Hellman key agreement with SHA-384 using
the NIST curve P-384 as defined in RFC5656

◦ ecdh-sha2-nistp521: Elliptic Curve Diffie-Hellman key agreement with SHA-384 using
the NIST curve P-521 as defined in RFC5656

The following subsections briefly describe the implementation of SSH client and SSH server. For
detailed information about the SSH Transport Layer Protocol, SSH Authentication Protocol, SSH
Connection Protocol, and SSH Protocol Architecture, refer to the corresponding protocol
specifications in RFC 4250ff.

7.8.1.1 SSH Client

The SSH client first parses arguments and reads the configuration (readconf.c), then calls
ssh_connect (in sshconnect*.c) to open a connection to the server, and performs authentication
(ssh_login in sshconnect.c). Terminal echo is turned off while users type their passwords, which
prevents the password from being displayed on the terminal as it is being typed. The SSH client
then makes requests such as allocating a pseudo-tty, forwarding X11 connections, forwarding TCP-
IP connections and so on, and might call code in ttymodes.c to encode current tty modes. Finally,
the SSH client calls client_loop in clientloop.c.

The client is typically installed with suid as root. The client temporarily gives up this right while
reading the configuration data. The root privileges are used to make the connection from a
privileged socket, which is required for host-based authentication and to read the host key for host-
based authentication using protocol version 1. Any extra privileges are dropped before calling
ssh_login. Because .rhosts support is not included in the TSF, the SSH client is not suid root on the
system.

Any SSH packet larger than 218 bytes is discarded.

7.8.1.2 SSH Server Daemon

The sshd daemon starts by processing arguments and reading the /etc/ssh/sshd_config configuration
file. The configuration file contains keyword-argument pairs, one per line. Refer to the sshd_config
man page for available configuration options. The daemon then reads the host key, starts listening
for connections, and generates the server key.

When the server receives a connection, it forks a process and re-executes the sshd binary, disables
the regeneration alarm, and starts communicating with the client. The server and client first perform
identification string exchange, and then negotiate encryption and perform authentication. If
authentication is successful, the forked process sets the effective user ID to that of the authenticated
user, performs preparatory operations, and enters the normal session mode by calling server_loop in
serverloop.c.

When the server accepts a new connection, it prints the contents of the file pointed to by the
configuration variable “Banner” before any authentication takes place.

Any SSH packet larger than 218 bytes is discarded.

7.8.1.2.1 Password-based authentication

The password based authentication utilizes the PAM library if the configuration option UsePAM is
set in sshd_config. The SSH daemon receives the user name and password after setting up the SSH

78 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

tunnel and feeds it into the PAM library. The following sequence is used by the SSH daemon to
access the PAM library:

1. Initializing the interaction with the PAM library using the pam_start. The PAM
configuration name is set to the file name of the SSH daemon which is “sshd”.

2. Establishing a thread that is used for the authentication conversation. That thread uses
pam_authenticate to authenticate the user. If the PAM library requires a change of the
authentication token, pam_chauthtok is called.

3. If the authentication returns PAM_SUCCESS, pam_open_session is used to set up the user
session.

7.8.1.2.2 Key-based authentication

If the key-based authentication is enabled, the SSH daemon allows the use of RSA or ECDSA keys
as authentication token.

The following steps are performed by the SSH daemon:

1. Verify that the user name is defined on the local system. If not, the authentication attempt is
terminated.

2. The key-based authentication is performed as defined by RFC 4252. The public key for the
key-based authentication must reside in the home directory of the target user in the file .ssh/
authorized_keys. As this file may contain multiple key, each key is tried whether it is
appropriate as a public key for the authentication attempt (i.e. whether the public key can
decrypt the data sent by the client encrypted with the client's private key). The first key that
is found to match the private key indicates a successful authentication.

3. If the authentication was successful, pam_open_session is used to set up the user session.
The session part of the PAM configuration file for the SSH daemon is applied.

7.9 SFR to TSS References

The Protection Profile mandates various specific information to be supplied in the TSS to cover
aspects of the SFRs. The following table enumerates the SFRs from the Protection Profile and the
extended packages and adds pointers into the TSS documenting the respective aspects.

SFR Coverage in TSS

FCS_CKM.1(1) The key generation supported by the TOE is documented in section 7.1.

References to CAVS certificates are provided in the application notes to
the SFR.

FCS_CKM.2(1) The key establishment supported by the TOE is documented in section 7.1.

References to CAVS certificates are provided in the application notes to
the SFR.

FCS_CKM.4 The key destruction supported by the TOE is documented in section 7.1.

FCS_COP.1(1) The cryptographic mechanisms provided by the TOE are documented in
section 7.1.

Version 1.4 Classification: atsec public 79 of 82
 Copyright © 2019 by Oracle and atsec

TOE Summary Specification Security Target for Oracle Linux 7.3

SFR Coverage in TSS

References to CAVS certificates are provided in the application notes to
the SFR.

FCS_COP.1(2) The cryptographic mechanisms provided by the TOE are documented in
section 7.1.

References to CAVS certificates are provided in the application notes to
the SFR.

FCS_COP.1(3) The cryptographic mechanisms provided by the TOE are documented in
section 7.1.

References to CAVS certificates are provided in the application notes to
the SFR.

FCS_COP.1(4) The cryptographic mechanisms provided by the TOE are documented in
section 7.1.

References to CAVS certificates are provided in the application notes to
the SFR.

FCS_RBG_EXT.1 The cryptographic mechanisms provided by the TOE are documented in
section 7.1.

References to CAVS certificates are provided in the application notes to
the SFR.

FCS_STO_EXT.1 The block device encryption support is documented in section 7.1.5.

FCS_TLSC_EXT.1 The supported TLS cipher suites and TLS options are listed in section
7.1.2.

FCS_TLSC_EXT.2 The supported curves are listed in section 7.1.2.

FDP_ACF_EXT.1 The DAC support is explained in section 7.2.

FDP_IFC_EXT.1 The TOE provides different VPN interface to allow VPN clients to
implement a VPN: the TOE provides the XFRM framework with the
XFRM netlink interface. In addition, it provides the TUN/TAP interface
for supporting user-space VPN clients operating at ISO/OSI level 2 or 3.

FMT_MOF_EXT.1 Security management is documented in section 7.4.

FMT_SMF_EXT.1 Security management is documented in section 7.4.

FPT_ACF_EXT.1 The TSF protection is documented in section 7.3.

FPT_ASLR_EXT.1 The TOE implements address space layout randomization for all user
space code.

FPT_SBOP_EXT.1 The use of stack canaries is documented in section 7.3.1.

FPT_TST_EXT.1 Secure boot is documented in section 7.3.3.

80 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

Security Target for Oracle Linux 7.3 TOE Summary Specification

SFR Coverage in TSS

FPT_TUD_EXT.1 The TOE allows automated check for the availability of OS updates as
documented in section 7.3.4.

FPT_TUD_EXT.2 The TOE allows automated check for the availability of application
updates for applications delivered as part of the Oracle Linux distribution
as documented in section 7.3.4.

FAU_GEN.1 The audit support and auditable events are documented in section 7.5.

FIA_AFL.1 The identification and authentication support is documented in section 7.6.

FIA_UAU.5 The identification and authentication support is documented in section 7.6.

FIA_X509_EXT.1 X.509 support is documented in section 7.6.5.

FIA_X509_EXT.2 X.509 support is documented in section 7.6.5.

FTP_ITC_EXT.1 TLS support is documented in section 7.7.1.

SSH support is documented in section 7.8.

FTP_TRP.1 Remote OS administration is offered via SSH. The administrator logs into
the TOE via SSH to perform system-local administration operations.

FPT_TST_EXT.1 The executed self tests are documented in section 7.1.6.

FCS_SSH_EXT.1 SSH support is documented in section 7.8.

FCS_SSHC_EXT.1 SSH support including the supported cryptographic mechanisms is
documented in section 7.8.

FCS_SSHS_EXT.1 SSH support including the supported cryptographic mechanisms is
documented in section 7.8.

Table 9: SFR to TSS References

Version 1.4 Classification: atsec public 81 of 82
 Copyright © 2019 by Oracle and atsec

Abbreviations Security Target for Oracle Linux 7.3

8 Abbreviations
Abbreviation Description

AH Authentication Header

CC Common Criteria

DAC Discretionary Access Control

EAL Evaluation Assurance Level

ESP Encapsulating Security Payload

IKE Internet Key Exchange

IPSEC IP Security Protocol

MAC Mandatory Access Control

OSPP Operating System Protection Profile

PP Protection Profile

SAR Security Assurance Requirement

SFP Security Function Policy

SFR Security Functional Requirement

SSH Secure Shell

ST Security Target

TOE Target of Evaluation

TLS Transport Layer Security

TSF TOE security function

TSFI TSF Interface

TSP TOE security policy

82 of 82 Classification: atsec public Version 1.4
Copyright © 2019 by Oracle and atsec

	1 Introduction
	1.1 Security Target Identification
	1.2 TOE Identification
	1.3 TOE Type
	1.4 TOE Overview
	1.4.1 Configurations Defined With this ST
	1.4.2 Overview Description
	1.4.3 Required Hardware and Software
	1.4.4 Intended Method of Use
	1.4.4.1 General-purpose Computing Environment
	1.4.4.2 Operating Environment

	1.4.5 Major Security Features

	1.5 TOE Description
	1.5.1 Introduction
	1.5.2 TOE Boundaries
	1.5.2.1 Physical
	1.5.2.2 Logical
	1.5.2.2.1 Auditing
	1.5.2.2.2 Cryptographic support
	1.5.2.2.3 Identification and Authentication
	1.5.2.2.4 Discretionary Access Control
	1.5.2.2.5 Security Management
	1.5.2.2.6 Self Protection

	1.5.2.3 Additional Functions
	1.5.2.4 Configurations
	1.5.2.5 TOE Environment
	1.5.2.6 Security Policy Model

	1.6 Applied Technical Decisions

	2 Conformance Claims
	2.1 Conformance with CC parts 2 and 3
	2.2 Conformance with Packages
	2.3 Conformance with other Protection Profiles

	3 Security Problem Definition
	3.1 Threats
	3.1.1 Assets
	3.1.2 Threat Agents
	3.1.3 Threats countered by the TOE

	3.2 Organizational Security Policies
	3.3 Assumptions
	3.3.1 Physical aspects
	3.3.2 Personnel aspects

	4 Security Objectives
	4.1 Security Objectives for the TOE
	4.2 Security Objectives for the Operational Environment
	4.3 Rationale for Security Objectives
	4.3.1 Security Objectives coverage
	4.3.2 Security Objectives sufficiency

	5 Extended Components Definition
	6 Security Requirements
	6.1 Security Functional Requirements
	6.1.1 Cryptographic Support
	6.1.1.1 FCS_CKM.1(1) Cryptographic key generation
	6.1.1.2 FCS_CKM.2(1) Cryptographic Key Establishment
	6.1.1.3 FCS_CKM.4 Cryptographic Key Distribution
	6.1.1.4 FCS_COP.1(1) Cryptographic operation – Encryption/Decryption
	6.1.1.5 FCS_COP.1(2) Cryptographic operation – Hashing
	6.1.1.6 FCS_COP.1(3) Cryptographic operation – Signing
	6.1.1.7 FCS_COP.1(4) Cryptographic operation - Keyed-hash Message Authentication
	6.1.1.8 FCS_RBG_EXT.1 Random Bit Generation
	6.1.1.9 FCS_STO_EXT.1 Storage of Sensitive Data
	6.1.1.10 FCS_TLSC_EXT.1 TLS Client Protocol
	6.1.1.11 FCS_TLSC_EXT.2 - TLS Client Curves Allowed

	6.1.2 User Data Protection
	6.1.2.1 FDP_ACF_EXT.1 Access Controls for Protecting User Data
	6.1.2.2 FDP_IFC_EXT.1 Information flow control

	6.1.3 Security Management
	6.1.3.1 FMT_MOF_EXT.1 Management of security functions behavior
	6.1.3.2 FMT_SMF_EXT.1 Extended: Specification of Management Functions

	6.1.4 Protection of the TSF
	6.1.4.1 FPT_ACF_EXT.1 Access Controls
	6.1.4.2 FPT_ASLR_EXT.1 Address Space Layout Randomization
	6.1.4.3 FPT_SBOP_EXT.1 Stack Buffer Overflow Protection
	6.1.4.4 FPT_TST_EXT.1 Boot Integrity
	6.1.4.5 FPT_TUD_EXT.1 Trusted Update
	6.1.4.6 FPT_TUD_EXT.2 Trusted Update for Application Software

	6.1.5 Audit Data Generation
	6.1.6 Identification and Authentication
	6.1.6.1 FIA_AFL.1 Authentication failure handling
	6.1.6.2 FIA_UAU.5 Multiple Authentication Mechanisms
	6.1.6.3 FIA_X509_EXT.1 X.509 Certificate Validation
	6.1.6.4 FIA_X509_EXT.2 X.509 Certificate Authentication

	6.1.7 Trusted Path/Channel
	6.1.7.1 FTP_ITC_EXT.1 Trusted channel communication
	6.1.7.2 FTP_TRP.1 Trusted Path

	6.1.8 Extended Package for Secure Shell
	6.1.8.1 FCS_SSH_EXT.1 SSH Protocol
	6.1.8.2 FCS_SSHC_EXT.1 SSH Protocol - Client
	6.1.8.3 FCS_SSHS_EXT.1 SSH Protocol - Server

	6.2 Rationale for Security Functional Requirements
	6.3 Security Assurance Requirements
	6.4 Rationale for Security Assurance Requirements

	7 TOE Summary Specification
	7.1 Cryptographic Support
	7.1.1 Linux kernel crypto API
	7.1.2 OpenSSL
	7.1.3 NSS
	7.1.4 Libgcrypt
	7.1.5 Block Device Encryption Support
	7.1.5.1 Device Mapper
	7.1.5.2 dm_crypt Target
	7.1.5.2.1 Initialization Vector Handling
	7.1.5.2.2 XTS tweak generation
	7.1.5.2.3 Cryptographic Support
	7.1.5.2.4 Sensitive Data Processing

	7.1.6 Self Tests

	7.2 User Data Protection
	7.2.1 Permission Bits
	7.2.2 Access Control Lists (ACLs)
	7.2.3 Special Permission

	7.3 Protection of TSF Data
	7.3.1 Stack Buffer Overflow Protection
	7.3.2 Boot Process
	7.3.2.1 Boot Loader
	7.3.2.2 Kernel Boot Process
	7.3.2.3 User Space Boot Process
	7.3.2.3.1 Initramfs
	7.3.2.3.2 Systemd

	7.3.3 Secure Boot Support
	7.3.3.1 UEFI Secure Boot Support

	7.3.4 Trusted Installation and Update

	7.4 Security Management
	7.4.1 Privileges

	7.5 Audit Data Generation
	7.5.1 Audit Functionality
	7.5.2 Audit Trail
	7.5.3 Audit Subsystem Implementation
	7.5.3.1 Audit Components
	7.5.3.2 Kernel-Userspace Interface
	7.5.3.3 Task Structure Extensions for Audit
	7.5.3.4 System Call Auditing
	7.5.3.5 Socket call and IPC audit record generation
	7.5.3.6 Filesystem auditing
	7.5.3.7 Auditing of other kernel actions
	7.5.3.8 Kernel audit initialization
	7.5.3.9 Audit Record Format
	7.5.3.10 Auditing Support for OpenSSH
	7.5.3.11 Time Stamp Maintenance

	7.6 Identification and Authentication
	7.6.1 PAM-based identification and authentication mechanisms
	7.6.1.1 Pluggable Authentication Module
	7.6.1.2 PAM Modules
	7.6.1.3 User Identity Changing
	7.6.1.3.1 su command
	7.6.1.3.2 sudo command

	7.6.2 Authentication Data Management
	7.6.3 SSH Key-Based Authentication
	7.6.4 Session Locking
	7.6.5 X.509 Certificate Validation
	7.6.5.1 TLS Key-Based Authentication

	7.7 Trusted Path / Channel
	7.7.1 TLS Protocol

	7.8 Secure Shell
	7.8.1 OpenSSH Implementation Details
	7.8.1.1 SSH Client
	7.8.1.2 SSH Server Daemon
	7.8.1.2.1 Password-based authentication
	7.8.1.2.2 Key-based authentication

	7.9 SFR to TSS References

	8 Abbreviations

