

Common Criteria
Security target for Xperia™ devices

Common Criteria Guide for Xperia Devices 2

1 About this document
This Xperia™ in Business guide describes enterprise services and features that Sony Mobile offers in its Xperia
devices. For specific details about supported products and software versions, visit www.sonymobile.com/global-
en/xperia/business/it-support/.

1.1 Limitations to services and features
Some of the services and features described in this document might not be supported in all countries/regions or
by all networks and/or service providers in all areas. Please contact your network operator or service provider to
determine availability of any specific service or feature and whether additional access or usage fees apply.

1.2 Legal limitations
This document provides general information about developing a corporate mobile IT framework. It is a tool to
help your company start judging its needs. It is not intended as a standalone guide for development of a mobile
IT framework, does not replace the need for advice from qualified professionals, and is not in any way tailored to
meet your company’s specific needs. Sony Mobile may update this document at any time without notice. This
document and its contents are provided “as is”, so use at own risk. Sony Mobile expressly disclaims all
warranties, express, implied, statutory, or otherwise. By continuing to read and enjoy this document you agree
that Sony Mobile shall never be liable for any direct, indirect, special, consequential, or punitive damages, loss,
or harm you may incur (including loss of data, use, profits, and/or business opportunity) whether or not Sony
Mobile has been advised or was aware of the possibility of such damage, loss, or harm.

1.3 Trademarks and acknowledgements
All product and company names mentioned herein are the trademarks or registered trademarks of their respective
owners. Any rights not expressly granted herein are reserved. All other trademarks are property of their
respective owners.

Visit www.sonymobile.com/global-en/legal/ for more information.

1.4 Document release date
January 25, 2017.

This document is published by:
Sony Mobile Communications Inc., 4–12–3 Higashi-Shinagawa,
Shinagawa-ku, Tokyo, 140–0002, Japan
www.sonymobile.com

© Sony Mobile Communications Inc., 2009-2016.
All rights reserved. You are hereby granted a license to download
and/or print a copy of this document.

Any rights not expressly granted herein are reserved.

First released version (October 2016)

Revision 1.2

This document is published by Sony Mobile Communications Inc.,
without any warranty*.
Improvements and changes to this text necessitated by
typographical errors, inaccuracies of current information or
improvements to programs and/or equipment may be made by
Sony Mobile Communications Inc. at any time and without notice.
Such changes will, however, be incorporated into new editions of
this document. Printed versions are to be regarded as temporary
reference
copies only.

*All implied warranties, including without limitation the implied
warranties of merchantability or fitness for a particular purpose,
are excluded. In no event shall Sony or its licensors be liable for
incidental or consequential damages of any nature, including but
not limited to lost profits or commercial loss, arising out of the use
of the information in this document.

Common Criteria Guide for Xperia Devices 3

2 Contents
1	 About	this	document	..	2	
1.1	 Limitations	to	services	and	features	...	2	
1.2	 Legal	limitations	..	2	
1.3	 Trademarks	and	acknowledgements	..	2	
1.4	 Document	release	date	...	2	

2	 Contents	..	3	

3	 Introduction	..	5	
3.1	 Security	Target	Identification	..	5	
3.2	 TOE	Identification	...	5	
3.3	 TOE	Overview	..	5	
3.4	 TOE	Description	..	6	
3.4.1	 TOE	security	architecture	..	7	
3.4.2	 Security	functions	provided	by	the	TOE	..	13	
3.4.3	 Required	non‑TOE	Hardware/Software/Firmware	..	13	
3.4.4	 Physical	Scope	of	the	TOE	...	13	
3.4.5	 Logical	Scope	of	the	TOE	...	14	

4	 Conformance	Claim	...	15	

5	 Security	Problem	Definition	..	16	
5.1	 Threats	..	16	
5.2	 Assumptions	..	17	
5.3	 Organizational	Security	Policy	...	17	

6	 Security	Objectives	...	18	
6.1	 Security	Objectives	for	the	TOE	..	18	
6.2	 Security	Objectives	for	the	Operational	Environment	..	19	

7	 Extended	Component	Definition	..	20	

8	 Security	Functional	Requirements	..	22	
8.1	 Class:	Cryptographic	Support	(FCS)	...	22	
8.1.1	 Cryptographic	Key	Management	(FCS_CKM)	..	22	
8.2	 Class:	User	Data	Protection	(FDP)	...	27	
8.2.1	 Access	Control	(FDP_ACF)	...	27	
8.2.2	 Data-At-Rest	Protection	(FDP_DAR)	...	27	
8.2.3	 Subset	Information	Flow	Control	–	VPN	(FDP_IFC)	...	27	
8.2.4	 Certificate	Data	Storage	(FDP_STG)	..	27	
8.2.5	 Inter-TSF	User	Data	Protected	Channel	(FDP_UPC)	..	27	
8.3	 Class:	Identification	and	Authentication	(FIA)	..	27	
8.3.1	 Authentication	Failures	(FIA_AFL)	...	27	
8.3.2	 Bluetooth	Authorization	and	Authentication	(FIA_BLT)	...	28	
8.3.3	 Port	Access	Entity	Authentication	(FIA_PAE)	..	28	
8.3.4	 Password	Management	(FIA_PMG)	..	28	
8.3.5	 Authentication	Throttling	(FIA_TRT)	...	28	
8.3.6	 User	Authentication	(FIA_UAU)	..	28	
8.3.7	 Protected	Authentication	Feedback	...	28	
8.3.8	 Authentication	for	Cryptographic	Operation	..	28	
8.3.9	 Timing	of	Authentication	..	28	
8.3.10	 Re-Authentication	...	29	
8.3.11	 X509	Certificates	(FIA_X509)	...	29	

Common Criteria Guide for Xperia Devices 4

8.4	 Class:	Security	Management	(FMT)	..	30	
8.4.1	 Management	of	Functions	in	TSF	(FMT_MOF)	...	30	
8.4.2	 Specification	of	Management	Functions	(FMT_SMF)	...	30	
8.5	 Class:	Protection	of	the	TSF	(FPT)	...	33	
8.5.1	 Anti-Exploitation	Services	(FPT_AEX)	..	33	
8.5.2	 Key	Storage	(FPT_KST)	..	34	
8.5.3	 Reliable	Time	Stamps	(FPT_STM)	..	34	
8.5.4	 TSF	Functionality	Testing	(FPT_TST)	..	34	
8.5.5	 Trusted	Update	(FPT_TUD)	...	34	
8.6	 Class:	TOE	Access	(FTA)	...	35	
8.6.1	 Session	Locking	(FTA_SSL)	...	35	
8.6.2	 Default	TOE	Access	Banners	...	35	
8.6.3	 Wireless	Network	Access	(FTA_WSE)	...	35	
8.7	 Class:	Trusted	Path/Channels	(FTP)	..	35	
8.7.1	 Trusted	Channel	Communication	(FTP_ITC)	...	35	

9	 Security	Assurance	Requirements	..	37	

10	 TOE	Summary	Specification	..	38	
10.1	 Cryptographic	Support	..	38	
10.1.1	 Cryptographic	key	management	...	38	
10.1.2	 Cryptographic	primitives	...	40	
10.1.3	 Key	access	control	...	41	
10.1.4	 Cryptographic	Protocols	...	41	
10.2	 User	Data	Protection	..	43	
10.3	 Identification	and	Authentication	...	45	
10.4	 Security	Management	...	45	
10.5	 Protection	of	the	TSF	..	46	
10.5.1	 Address	Space	Randomization	and	Protection	against	Buffer	Overflow	46	
10.5.2	 Separation	and	Sandboxing	..	46	
10.5.3	 Hardware	Protection	of	Keystore	...	46	
10.5.4	 Full	Disk	Encryption	...	47	
10.5.5	 Secure	Boot	and	Self-test	..	47	
10.5.6	 Software	Firmware	Control	and	Updates	...	49	
10.6	 TOE	Access	..	49	
10.7	 Trusted	Path	and	Trusted	Channels	..	50	
10.8	 Mapping	to	the	Security	Functional	Requirements	..	51	

11	 Abbreviations,	Terminology	and	References	..	60	
11.1	 Abbreviations	and	Terminology	..	60	
11.2	 References	..	60	

Common Criteria Guide for Xperia Devices 5

3 Introduction
This document is the Common Criteria Security Target for Sony Xperia X and Sony Xperia X Performance for
the hardware platforms listed in section 1.2. The Security Target is compliant with the NIAP Mobile Device
Fundamentals Protection Profile Version 2.0, dated 17 September 2014 [MDFPP].

3.1 Security Target Identification
Title: Common Criteria Security Target for Sony Xperia Devices
Version: 1.2
Date: January 25, 2017
Developer: Sony Mobile Communications
Keywords: Mobile Phone, Smartphone, Common Criteria

3.2 TOE Identification
The TOE are the two smartphones Sony Xperia X and Sony Xperia X Performance. They both use Android™
version 6.0.1 (Marshmallow MR1). The kernel version is 3.18.20 in Xperia X Performance and the kernel
version is 3.10.84 in Xperia X. Details on the two smartphone devices are shown below.

Device Type number Build Qualcomm platform

Xperia X PM-0930-BV 34.0.A.1.268 8956 (Snapdragon 650)

Xperia X Performance PM-0940-BV 35.0.A.1.227 8996 (Snapdragon 820)

3.3 TOE Overview
The TOE is a Sony Xperia smartphone, the Sony Xperia X and Sony Xperia X Performance. The smartphones
use Android 6.0.1 (Marshmallow MR1) with modification and extensions from Sony Mobile. The mobile
operating system manages the device hardware and provides a platform for running Android apps.

The TOE provides the following security functionality:

• Protected storage: The TOE provides encryption of data and keys stored on the device to prevent
unauthorized access to encrypted data. Access to encrypted data is only provided once the user has been
successfully authenticated.

• Mobile device configuration: The TOE provides the capability to configure and apply security policies
defined by the user and the administrators. The administrator may perform administration locally or
using mobile device management system ensuring that administrator security policies have in
precedence of user specified security policies.

• Protected communication: The TOE provides a trusted and encrypted channel between the TOE and
remote networks for the protection of user and Enterprise data, as well as for configuration data.

• Authentication: The TOE provides user authentication and require that users are authenticated before
accessing certain protected functionality and data. The TOE will automatically lock following a
configured period of inactivity in an attempt to ensure authorization will be required in the event of the
device being lost or stolen.

• Mobile device integrity: The TOE provide secure boot and performs self-tests to ensure the integrity of
critical functionality, software/firmware and data has been maintained. The user is notified of any
failure of these self-tests.

The TOE is intended to be used in enterprise environment that ensure that the TOE is configured and operated in
accordance to the specific Common Criteria mode as described by the guidance.

Common Criteria Guide for Xperia Devices 6

3.4 TOE Description
The smartphones are based on Android 6.0 (Marshmallow). The mobile operating system manages the device
hardware and provides a platform for running Android apps1.

Since Android is a modern mobile platform that was designed to be open, it was possible for Sony Mobile to
adopt and extend this platform with Sony specific features. The Android platform has been further developed by
a number of Sony Mobile specific enhancements, including several security enhancements. Such as Xperia in
Business that provides a package and a configuration of those features to the corporate user.

The main Android platform building blocks are:

• Device Hardware: Android runs on a wide range of hardware configurations including smartphones,
tablets, and set-top-boxes. Android is processor-agnostic, but it takes advantage of hardware-specific
security capabilities such as ARM v6 eXecute-Never.

• Android Operating System: The core operating system is built on top of the Linux kernel. All device
resources, like camera functions, GPS data, Bluetooth® functions, telephony functions, network
connections, etc. are accessed through the operating system.

• Android Application Runtime: Android applications are most often written in the Java™
programming language and run in the Dalvik™ virtual machine. However, many applications,
including core Android services and applications are native applications or include native libraries.
Both Dalvik and native applications run within the same security environment, contained within the
Application Sandbox. Applications get a dedicated part of the file system in which they can write
private data, including databases and raw files.

Android applications extend the core Android operating system. There are two primary sources for applications:

• Pre-Installed Applications: Android and Xperia in Business includes a set of pre-installed applications
including phone, email, calendar, web browser, and contacts. These function both as user applications
and to provide key device capabilities that can be accessed by other applications. Pre-installed
applications are the ones that are part of the open source Android platform and of the Xperia in
Business for these specific devices.

• User-Installed Applications: Android provides an open development environment supporting any
third-party application. Google Play offers users hundreds of thousands of applications. No user-
installed application are part of the TOE or required as part of the TOE environment.

Google provides a set of cloud-based services that are available to any compatible Android device. The primary
services are:

• Google Play™: Google Play is a collection of services that allow users to discover, install, and
purchase applications from their Android device or the web. Google Play makes it easy for developers
to reach Android users and potential customers. Google Play also provides community review,
application license verification, application security scanning, and other security services.

• Android Updates: The Android update service delivers new capabilities and security updates to
Android devices, including updates through the web or over the air (OTA).

• Application Services: Frameworks that allow Android applications to use cloud capabilities such as
(backing up) application data and settings and cloud-to-device messaging (C2DM) for push messaging.

These services, including some specific Xperia in Business services, such as Xperia Care, are out of scope of the
TOE.

1	Much	of	the	information	provided	in	this	section	originates	from	the	Android	Security	documentation	
available	here	https://source.android.com/security/index.html.	

Common Criteria Guide for Xperia Devices 7

3.4.1 TOE security architecture
This section describes the overall security architecture and the functionality of the Xperia android
implementation. For a description of the logical and physical scope of the TOE see section 3.4.2 and 3.4.4.
Securing an open platform requires a robust security architecture and rigorous security programs. Android was
designed with multi-layered security that provides the flexibility required for an open platform, while providing
protection for all users of the platform.

Xperia devices from Sony provide a multi-layer security architecture:

• System security - Xperia devices offer Linux kernel-level security from Android with Sony Mobile
enhancements like Runtime integrity, HW and SW integrity and Secure Boot Chain.

• Secure storage - Devices are be protected by passwords and data on the devices is encrypted.

• Network security - Transmissions are encrypted and Xperia devices have built-in support for industry-
standard VPN protocols.

• Device security - Administrators can control the use of certain features or apps on devices, e.g. data
from lost devices can be wiped.

• Digital certificates - Xperia devices support digital certificates to enable authentication and
authorisation of users connecting to corporate networks.

Figure 1 - The Android architecture used by Xperia

3.4.1.1 System security
The Android operating system offers a well-defined security architecture. As the Android OS is based on the
Linux operating system, it takes advantage of the proven Linux kernel-level security model. The OS uses the
Android Application Sandbox, which isolates application data and code execution from other applications. Since
applications cannot interact with each other, and have limited access to the OS, sensitive information is protected
if the user doesn’t permit access. Android uses Security Enhanced (SE) Linux mandatory access control
mechanism for increased separation at kernel level.

Figure 1: XperiaTM system security

Application sandbox

App + data

User partition

Encryption-Enabled File System

System partition

Runtime Integrity Check

Linux Kernel Security

IPC/ASLR

Trust zone

Hardware Unique Key (HUK)

Sony Mobile Root CA Key

Application protection

System protection

Hardware & firmware

Software

XperiaTM in Business White paper

Robust architecture with multiple layers

Xperia™ devices from Sony provide a multi-layer security architecture:

System security - Xperia™ devices offer Linux kernel-level security
from Android™ with Sony Mobile enhancements like Runtime integrity,
HW and SW integrity and Secure Boot Chain.

Secure storage - Devices can be protected by passwords, PIN codes
and screen unlock patterns. Data on the devices can be encrypted.

Network security - Transmissions are encrypted and Xperia™
devices have built-in support for industry-standard VPN protocols.

Device security - Administrators can control the use of certain
features or apps on devices. Data from lost devices can be wiped.

Digital certificates - Xperia™ devices support digital certificates
to enable authentication and authorisation of users connecting to
corporate networks.

Security
XperiaTM devices offer a robust security architecture
to secure communications and to protect data
stored on the device. The AndroidTM security model
combines with Sony Mobile enhancements to
provide a stable and secure platform.

Common Criteria Guide for Xperia Devices 8

3.4.1.1.1 Application sandbox
The Application Sandbox in the OS kernel protects native code and OS applications. All software above the
kernel, including libraries, application runtime and applications, runs inside the Application Sandbox. The fact
that the Android platform does not allow applications on the device to interact with each other and limits their
access to the OS is key to enforcing security in Android devices. This system is referred to as the Android
Application Sandbox. The Android OS assigns a unique Linux user ID to each application. The application then
runs as a unique Linux user in a separate process. This means that if one application tries to read data or start a
process in another application without permission, this action is stopped by the OS since the instigating
application doesn’t have the appropriate user privileges.

3.4.1.1.2 Application code signing
Each application that is used in the Application Sandbox on an Android device must be signed. Without a
legitimate signature, an application cannot be installed; it will get rejected by either Google Play or by the
package installer on the Android device. The certificate of the signed application defines the user ID that is
associated with that application. Application signing also ensures that one application cannot access any other
application except through well-defined inter-process communication (IPC). In addition, apps available from
Google Play are automatically scanned for malware.

3.4.1.1.3 User-based permissions for applications
Without a user’s explicit permission, an Android application cannot access any system resources or sensitive
APIs, with a few limited exceptions. Trusted applications can use sensitive APIs, but only after the user has
given permission. Examples of sensitive APIs are camera functions; location data (GPS); Bluetooth wireless
technology; telephony functions; SMS and MMS functions; and network and data connections. These API
resources are only accessible through the OS. To be able to use a sensitive API on the device, an application
must state which capabilities it needs. One of the steps when installing an Android application is to judge
whether you want to approve the permissions that the application requests. At this stage in the installation
process you can deny the application access and interrupt the installation. The permissions are only granted as
long as the application is installed. If the user uninstalls the application, the permissions are removed.

3.4.1.1.4 Address space layout randomiser
The task of the Address Space Layout Randomiser (ASLR) is to make sure that system applications and libraries
are stored in random locations in the memory. The Android OS uses this randomisation to protect the device
against exploitation of the memory, and against malware getting installed on the device with the risk of
corrupting the memory. ASLR prevents Return-Oriented Programming (ROP) attacks. Most binaries are
randomised when executed because they are linked with the PIE (Position Independent Executable) flag. The
linkers are randomised in the process address space. The Android OS has full stack, heap/brk, lib/mmap, linker,
and executable ASLR.

3.4.1.1.5 Sony Mobile secure boot chain
Each step of the boot-up and the software update processes contains components that are cryptographically
signed by Sony to ensure integrity of the core Android components, which is the basis for trusting the security
functionality it provides.

3.4.1.1.6 Runtime integrity check
To further improve security in Xperia devices, Sony has introduced a runtime integrity check to detect runtime
attacks. The runtime integrity check is integrated in the kernel and verifies that the mount table has not been
modified. This is to prevent attackers from, for example, storing executables that remount and modify the system
partition of the memory to make root access permanent.

3.4.1.2 Secure storage
Xperia devices provide proven methods for protecting sensitive information. Passwords prevent unauthorised use
and data stored on the device is encrypted, making it unreadable to anyone but the intended user. The combined
efforts of a strong password and encryption capabilities guarantee robust protection of sensitive data stored on
Xperia devices, and a lost device can be remotely locked and wiped to protect sensitive content.

3.4.1.2.1 Encryption
Xperia devices offer full encryption with 256-bit AES for all user data in the internal storage, as well as any
external SD card. This means that any data saved by and to applications, for example, email messages, email
attachments, text and multimedia messages and contacts, is protected with a hardware encryption key against
unauthorised access. A phone that ends up in the wrong hands does not risk having its file system broken into,
thanks to the full file system encryption available in Xperia devices.

Common Criteria Guide for Xperia Devices 9

All data is encrypted and protected by the user password. If a device gets lost, confidential corporate information
stays safe, and can only be accessed by knowing the password.

In addition, Xperia devices can defend themselves from dictionary password attacks by enforcing password
complexity based on rules that your IT department can set.

The applications on Xperia devices, such as email, can use TLS to encrypt data sent between the Android OS
and corporate services. To further enhance security in email, the Xperia email application offers S/MIME
(Secure/Multipurpose Internet Mail Extensions). Note that this application is outside of the scope of the TOE for
this Security Target.

3.4.1.2.2 Remote wipe
On an Xperia device that gets lost, stolen or otherwise compromised, the administrator can remotely remove all
data from the device and deactivate it. This remote wipe procedure can be performed by users or administrators
using a third party MDM solution or the ‘my Xperia’ service

3.4.1.2.3 Local wipe
Xperia devices can be set up to wipe all data and shut down after a set number of failed login attempts. This
ability, known as local wipe, makes sure that brute force cracking attempts are unsuccessful. The number of
failed attempts allowed before a local wipe occurs can be set by the user or the administrator using an MDM.

Small- and medium-sized companies that don’t want to rely on Microsoft® Exchange ActiveSync® or MDM
solutions for synchronisation and remote storage of information can use free-of-charge software from Sony
Mobile that is made for Microsoft® Windows® and Mac OS computers. These tools can be used to back up and
restore data locally on a computer. There is no need to create accounts or access the Internet.

3.4.1.2.4 Tools for Microsoft Windows and Mac® OS users
Sony Mobile provides additional products such as PC Companion for Microsoft Windows or Bridge for Mac to
help the users managing the Xperia device.

Both PC Companion for Microsoft Windows and Bridge for Mac offers local backup and restore functions.
When the software is installed on a computer, users simply connect their Xperia device to the computer using a
Wi-Fi® or using a USB cable. Both products features software update and software repair functionality. Users
can also use the tools to synchronise their device contacts and calendars directly with computers or local servers.
The Backup & Restore function supports the backup of the call log as well as contacts stored locally on the
device memory. Users can also back up text messages, bookmarks, system settings, application settings and data
(availability depends on the application) and media files. The backup and restore procedure is performed
between the Xperia device and the computer or a local server, that is, using a local connection that does not
require Internet access.

Note that none of these tools, application or Mobile Device Management systems or agents on the phone are
considered part of the TOE. The TOE only provides the API and capabilities to run and use these applications.

3.4.1.3 Network security
Xperia users within businesses and various organisations expect to be able to access corporate networks
wherever they are. At the same time, they require that their data be protected over a reliable connection, with
robust user-authorising methods in place. Xperia devices meet these security requirements whether users are
connected via a mobile network or a Wi-Fi connection.

Using tethering, an Xperia device can also be turned into a mobile hotspot to access the Internet safely from a
computer. In the corporate environment different network access methods and levels can be set to match
corporate IT policies, depending on where the device is used and which tools are available.

3.4.1.3.1 Secure connections
To encrypt communication between Xperia devices and corporate services, Xperia devices uses the security
standard Transport Layer Security (TLS v1.0, v1.1 and v1.2). Internet-based applications, such as the web
browser, Email application and the Calendar, use TLS to encrypt information sent over the Internet. There is also
support for StartTLS with IMAP/POP3 accounts.

3.4.1.3.2 Virtual private network (VPN)
Xperia users can connect to a corporate network with VPN access by using industry-standard protocols and user
authentication. Xperia devices and the Android OS support several VPN technologies, which makes the
integration of Xperia devices into an existing VPN solution easy. Compatibility with a wide selection of VPN

Common Criteria Guide for Xperia Devices 10

technologies combined with the Xperia device support for user authentication using the X.509 Digital Certificate
Standard results in robust protection for all remote connections.

3.4.1.3.3 Wi-Fi
To provide a high level of protection for data transmissions over a Wi-Fi connection, Xperia devices use WPA2
Enterprise with 128-bit AES encryption. In addition to the encryption, protection is enhanced by requiring
authentication for access to a wireless network. X.509 digital client certificates authenticate a user as a valid user
before permitting access to the network. Xperia devices also support 802.1x wireless authentication methods,
which means that they can be used with numerous RADIUS authentication solutions.

To enable easy setup when connecting to Wi-Fi networks, Xperia devices support Wi-Fi Protected Setup. Xperia
devices can be set to automatically connect to Wi-Fi networks within range. Once set up, networks that require
login credentials or other information are quickly accessed via automatic identification and web browser support.
Once login credentials have been entered, they are reapplied when needed as long as the original login window
in the web browser is kept in the background. In addition, Xperia devices support roaming based on the RSSI
(Received Signal Strength Indicator) level, which improves the Wi-Fi connection and authentication for devices
moving between access points. RSSI-level roaming improves connection reliability by automatically switching
from an access point with a weakening signal to a neighbouring access point with a stronger signal.

3.4.1.3.4 Bluetooth
Xperia devices have support for Bluetooth® version 4.0, which enables secure connections to other devices, like
computers, tablets, phones, printers or headsets, supported by Bluetooth technology. Xperia devices supply faster
data transfer with Enhanced Data Rate (EDR) and they also have support for Secure Simple Pairing (SSP),
enabling Public Key Infrastructure (PKI) encryption that protects against Man-in-the- middle (MITM)
eavesdropping attacks and safeguards the integrity of the communication.

3.4.1.3.5 Enterprise single sign on
Enterprise single sign on (SSO) enables user credentials to be used across apps. Each new app configured with
SSO verifies user permissions for enterprise resources, and logs users in without the need to re-enter passwords.
The SSO solution used in Xperia devices is Kerberos compliant and uses Active Directory verification. Please,
note that this security functionality is not within the scope of this evaluation.

3.4.1.4 Device Security
The screen lock combined with a passcode (a PIN or an alphanumeric password) is the first security barrier in
preventing unauthorised users from gaining access to the entire device. It protects business as well as personal
information. The passcode can be set by the user or enforced by the IT department. The complexity of the
password and other password-related requirements is configurable, e.g. by using an MDM system.

In addition to enforcing passcode policies, the use of device management solutions with Xperia devices enables
you to control device policies and device administration features. For example, you can restrict the use of certain
features or apps on devices or wipe data from lost devices.

3.4.1.4.1 Passcode policies
IT administrators can choose from a wide range of passcode requirements when deploying Xperia devices in a
corporate environment. In addition to requiring that an Xperia device is supplied with a passcode, you can
enforce what length a PIN or a password must have through the Minimum password length policy. By using the
Restrict password history policy, you can force users to create a new passcode that is different from their current
passcode or a recently used passcode. This policy is often combined with the Password expiration timeout policy
which forces users to update their passcode after a specified time period.

3.4.1.4.2 Device policies and administration
For an even higher level of security, you can add policies restricting the use of certain features on a device, or
determine which features should be disabled or enabled. Security policies developed by Sony Mobile for Xperia
devices include encryption of the external SD card. This is an addition to the Android OS support for device
policies. You can, for instance, require that the storage of the device has to be encrypted, or that the camera
should be disabled.

Xperia devices also support application blacklists and whitelists. This feature allows 3rd party MDMs (Mobile
Device Management) to add and remove applications to the lists. Applications on the blacklist are disabled and
cannot be started.

Common Criteria Guide for Xperia Devices 11

Within the device administration area, the Android OS provides a toolbox of administration features, ranging
from the possibility to remotely lock a device and wipe its content (including the content on the external SD
card) all the way through to remotely installing applications and updating installed applications.

3.4.1.4.3 Enforcing policies
By using device management solutions, an IT administrator can reach the whole fleet of Xperia devices used in a
company. By managing devices from one central point, you can guarantee a high level of security by being able
to enforce and monitor a wide range of parameters in the devices that access your corporate network and its
sensitive data. You can achieve a comprehensive security setup as all devices in your network follow the same
set of rules. You can configure different rule sets based on different user types.

When using Xperia devices, you can take advantage of the policies added by Sony Mobile as well as standard
policies supported by the Android OS. You can remotely configure password settings, and push out policies to
Xperia devices over the air using MDM solutions that support standard Android APIs. If the Xperia device uses
a Microsoft Exchange account, you can push Microsoft Exchange ActiveSync policies over a mobile or Wi-Fi
network.

3.4.1.4.4 Google Factory Reset Protection
By enabling the Google Factory Reset Protection (GFRP) you can set up your Xperia device to prevent other
people from using it if it’s been reset to factory settings without your permission. If your device is wiped – for
example by performing a software repair using PC Companion or Bridge for Mac – a protective mode called
Lockdown will be activated and only someone with your Google account or screen lock information can use the
device.

In lockdown mode the device will be completely useless:

• All running applications are stopped.

• You can no longer maximize the notification panel.

• Incoming calls are sent to voicemail (if available).

• Outgoing calls (except emergency calls) are blocked.

• The USB port will only be available for charging. It will not be possible for a PC or Mac to detect the
device. This also applies to a software repair or flash.

Lockdown will remain in effect until the user has validated the device using the correct Google credentials.
Reloading software or rebooting the device will not disable the service.

3.4.1.5 Digital certificates
Xperia devices support digital certificates, providing businesses and organisations with a way to authenticate and
authorise users to securely and efficiently transfer information to and from corporate networks. In addition,
digital certificates enable the encryption of data exchanged between servers and permitted devices. The security
is built around the Public Key Infrastructure (PKI) framework, which uses trusted encryption keys to protect
transmitted data.

Certificates are issued and approved by a Certificate Authority (CA). The CA could be an independent external
company, which is recognised and mutually trusted, or an internal organisation within your business. Digital
certificates can also authenticate a client or a device interacting with a network, attesting that the device really is
the device that it claims to be. Moreover, certificates are used to verify the sender of, for example, email
messages or documents, with the option of making sure the content is encrypted.

3.4.1.5.1 Server certificates
Xperia devices support client-server communication using Transport Layer Security (TLS). Authentication with
server certificates follows the X.509 digital certificate standard. Server certificates are stored in the internal
credential storage. Server certificates enable encrypted communication between the client and the server.

3.4.1.5.2 Client certificates
You can use client certificates as an efficient alternative to authentication by requiring a user name and
password, or a token. EAS servers, VPN gateways or Wi-Fi access points can identify Xperia devices using
client certificates before giving them access to a corporate network. In this setup, users must obtain and store the

Common Criteria Guide for Xperia Devices 12

certificate on the Xperia device before they can configure the device to use a VPN gateway or a corporate server.
Client certificates may also be used to enable secure messaging using S/MIME. Client certificates are stored in
the secure credential storage and protected by a user-selected password.

3.4.1.5.3 Certificate Pinning
Xperia devices support certificate pinning. Pinned domains will receive a certificate validation failure if the
certificate does not chain to a set of expected certificates. This protects against possible compromise of
Certificate Authorities.

3.4.1.6 Device management
Device management, such as installing and deletion of apps; changing the device settings, such as the passwords
and password policies; changing the status of the device such as activate and deactivate Wi-Fi and Bluetooth;
wipe and factory reset, are all management functions.

Device management can be performed in different ways: from the user interface of the device or remotely using
a mobile device management system (MDM). Local device management is performed by the primary user
(owner), secondary user or by the guest. Remote management using an MDM relies on a local MDM agent that
is performing the devices management operation using the API of the TOE, such as the Xperia in Business API.

Common Criteria Guide for Xperia Devices 13

3.4.2 Security functions provided by the TOE

3.4.2.1 Protected storage
Full disk encryption is the process of encoding all user data on an Android device using an encrypted key. Once
a device is encrypted, all user-created data is automatically encrypted before committing it to disk and all reads
automatically decrypt data before returning it to the calling process. Full disk encryption is a core component of
the TOE. It is always activated for the internal storage and cannot be deactivated by the user. The TOE also
supports SD card encryption.

The TOE provides encryption of data and keys stored on the device to prevent unauthorized access to encrypted
data. Access to encrypted data is only provided once the user has been successfully authenticated.

3.4.2.2 Mobile device configuration
The TOE provides the capability to configure and apply security policies defined by the user and the
administrators. The administrator can perform administration using mobile device management system ensuring
that administrator security policies have in precedence over any user specified settings.

3.4.2.3 Protected communication
The TOE provides a trusted and encrypted channel between the TOE and remote networks for the protection of
user and Enterprise data, as well as for configuration data. Encrypted communication is possible for IP
connections using Wi-Fi, mobile data, as well as for Bluetooth connections.

3.4.2.4 Authentication
The TOE provides user authentication and require that users are authenticated before accessing certain protected
functionality and data. The TOE will automatically lock following a configured period of inactivity in an attempt
to ensure authorization will be required in the event of the device being lost or stolen.

3.4.2.5 Mobile device integrity
The TOE provides a number of security features to protect the integrity of the TOE and TSF data:

• The TOE provides a trust anchor in the hardware protected key storage. The root of trust consists of
the public key used to verify the signature on the boot image and the locked state of the device. This
key is the basis for the verification of the integrity of the TSF and the TSF data. This key is
cryptographically bound to every key managed by Keymaster.

• The TOE provides functions to perform self-tests and software integrity checks to identify corrupt
software. If any of the self-tests fail, the TOE will not go into an operational mode. It also includes
mechanisms (i.e., verification of the digital signature of each new boot image) so that the TOE itself
can be updated while ensuring that the updates will not introduce malicious or other unexpected
changes in the TOE. Digital signature checking also extends to verifying applications prior to their
installation.

• The TOE provides protection of memory pages, uses address space layout randomization and stack-
based buffer overflow protections to minimize the potential to exploit application flaws. It is also
designed to protect itself from modification by applications as well as to isolate the address spaces of
applications from one another to protect those applications

• The separation mechanisms of the TOE, such as sandboxing and the SELinux mandatory access
control mechanism will improve integrity by preventing interference between applications.

3.4.3 Required non‑TOE Hardware/Software/Firmware

No additional hardware and software needed for the TOE to maintain its security.

However, for being able to use the TOE in its intended way, the TOE will need SIM card and a subscription with
a mobile operator, as well as access to a Google play account, most enterprise users will likely also use some sort
of MDM system for the configuring and management of the TOE.

3.4.4 Physical Scope of the TOE
The TOE is a mobile device, which is composed of a hardware platform and its system software. Excluded from
the TOE are user applications that run on top of the operating system. The TOE is intended to be used as a

Common Criteria Guide for Xperia Devices 14

mobile device within an enterprise environment where the configuration of the device is managed through a
compliant device management solution.

Within the scope of the TOE is the guidance provided to the user and administrator for the use and
administration of the TOE within the enterprise environment.

• User guide Xperia™ X, F5121

• User guide Xperia™ X Performance, F8131

• Common Criteria Guide for Xperia™ devices

3.4.5 Logical Scope of the TOE
The TOE provides the security functionality required by [MDFPP]. The security functionality is described in
section 3.4.2.

Common Criteria Guide for Xperia Devices 15

4 Conformance Claim
This Security Target is conformant to Common Criteria [CC] version 3.1 revision 4 Part1, Common Criteria Part
2 extended and Common Criteria Part 3 extended.

This Security Target claims exact conformance to version 2.0 of the Mobile Device Fundamentals Protection
Profile [MDFPP]. The security problem definition, security objectives and security requirements in this Security
Target are all taken from the Protection Profile performing only operations defined there.

Common Criteria Guide for Xperia Devices 16

5 Security Problem Definition
The security problem definition defines the security problem that is addressed by the TOE as well as the
assumptions on the operational environment that are necessary for the TOE to be able to address the security
problem.

The security problem definition has been taken directly from the [MDFPP] and is only reproduced here for the
convenience of the reader.

5.1 Threats

T.EAVESDROP Network Eavesdropping
An attacker is positioned on a wireless communications channel or elsewhere
on the network infrastructure. Attackers may monitor and gain access to data
exchanged between the Mobile Device and other endpoints.

T.NETWORK Network Attack
An attacker is positioned on a wireless communications channel or elsewhere
on the network infrastructure. Attackers may initiate communications with the
Mobile Device or alter communications between the Mobile Device and other
endpoints in order to compromise the Mobile Device. These attacks include
malicious software update of any applications or system software on the
device. These attacks also include malicious web pages or email attachments
which are usually delivered to devices over the network.

T.PHYSICAL Physical Access
The loss or theft of the Mobile Device may give rise to loss of confidentiality
of user data including credentials. These physical access threats may involve
attacks which attempt to access the device through external hardware ports,
through its user interface, and also through direct and possibly destructive
access to its storage media. The goal of such attacks is to access data from a
lost or stolen device which is not expected to return to its user.
Note: Defending against device re-use after physical compromise is out of
scope for this protection profile.

T.FLAWAPP Malicious or Flawed Application
Applications loaded onto the Mobile Device may include malicious or
exploitable code. This code could be included intentionally by its developer
or unknowingly by the developer, perhaps as part of a software library.
Malicious apps may attempt to exfiltrate data to which they have access. They
may also conduct attacks against the platform’s system software which will
provide them with additional privileges and the ability to conduct further
malicious activities. Malicious applications may be able to control the
device's sensors (GPS, camera, microphone) to gather intelligence about the
user's surroundings even when those activities do not involve data resident or
transmitted from the device. Flawed applications may give an attacker access
to perform network-based or physical attacks that otherwise would have been
prevented.

T.PERSISTENT Persistent Presence
Persistent presence on a device by an attacker implies that the device has lost
integrity and cannot regain it. The device has likely lost this integrity due to
some other threat vector, yet the continued access by an attacker constitutes
an on-going threat in itself. In this case the device and its data may be
controlled by an adversary at least as well as by its legitimate owner.

Common Criteria Guide for Xperia Devices 17

5.2 Assumptions

A.CONFIG It is assumed that the TOE’s security functions are configured correctly in a
manner to ensure that the TOE security policies will be enforced on all
applicable network traffic flowing among the attached networks.

A.NOTIFY It is assumed that the mobile user will immediately notify the administrator if
the Mobile Device is lost or stolen.

A.PRECAUTION It is assumed that the mobile user exercises precautions to reduce the risk of
loss or theft of the Mobile Device.

5.3 Organizational Security Policy
There are no organizational security policies.

Common Criteria Guide for Xperia Devices 18

6 Security Objectives
The security objectives have been taken directly the [MDFPP] and is only reproduced here for the convenience
of the reader.

6.1 Security Objectives for the TOE

O.COMMS Protected Communications
To address the network eavesdropping and network attack threats described in
Section 3.1, concerning wireless transmission of Enterprise and user data and
configuration data between the TOE and remote network entities, conformant
TOEs will use a trusted communication path. The TOE will be capable of
communicating using one (or more) of these standard protocols: IPsec, TLS,
HTTPS, or Bluetooth. The protocols are specified by RFCs that offer a
variety of implementation choices. Requirements have been imposed on some
of these choices (particularly those for cryptographic primitives) to provide
interoperability and resistance to cryptographic attack.
While conformant TOEs must support all of the choices specified in the ST,
they may support additional algorithms and protocols. If such additional
mechanisms are not evaluated, guidance must be given to the administrator to
make clear the fact that they were not evaluated.

O.STORAGE Protected Storage
To address the issue of loss of confidentiality of user data in the event of loss
of a Mobile Device (T.PHYSICAL), conformant TOEs will use data-at-rest
protection. The TOE will be capable of encrypting data and keys stored on the
device and will prevent unauthorized access to encrypted data.

O.CONFIG Mobile Device Configuration
To ensure a Mobile Device protects user and enterprise data that it may store
or process, conformant TOEs will provide the capability to configure and
apply security policies defined by the user and the Enterprise Administrator.
If Enterprise security policies are configured these must be applied in
precedence of user specified security policies.

O.AUTH Authorization and Authentication
To address the issue of loss of confidentiality of user data in the event of loss
of a Mobile Device (T.PHYSICAL), users are required to enter an
authentication factor to the device prior to accessing protected functionality
and data. Some non-sensitive functionality (e.g., emergency calling, text
notification) can be accessed prior to entering the authentication factor. The
device will automatically lock following a configured period of inactivity in
an attempt to ensure authorization will be required in the event of the device
being lost or stolen.
Authentication of the endpoints of a trusted communication path is required
for network access to ensure attacks are unable to establish unauthorized
network connections to undermine the integrity of the device.
Repeated attempts by a user to authorize to the TSF will be limited or
throttled to enforce a delay between unsuccessful attempts.

O.INTEGRITY Mobile Device Integrity
To ensure the integrity of the Mobile Device is maintained conformant TOEs
will perform self-tests to ensure the integrity of critical functionality,
software/firmware and data has been maintained. The user shall be notified of
any failure of these self-tests. (This will protect against the threat
T.PERSISTENT.)
To address the issue of an application containing malicious or flawed code
(T.FLAWAPP), the integrity of downloaded updates to software/firmware
will be verified prior to installation/execution of the object on the Mobile
Device. In addition, the TOE will restrict applications to only have access to

Common Criteria Guide for Xperia Devices 19

the system services and data they are permitted to interact with. The TOE will
further protect against malicious applications from gaining access to data they
are not authorized to access by randomizing the memory layout.

6.2 Security Objectives for the Operational Environment

OE.CONFIG TOE administrators will configure the Mobile Device security functions
correctly to create the intended security policy

OE.NOTIFY The Mobile User will immediately notify the administrator if the Mobile
Device is lost or stolen.

OE.PRECAUTION The Mobile User exercises precautions to reduce the risk of loss or theft of
the Mobile Device.

Common Criteria Guide for Xperia Devices 20

7 Extended Component Definition
This Security Target does not define any extended components, but relies on the extended components that are
defined in the Mobile Device Fundamentals Protection Profile [MDFPP]. It consists of both extend SFR
components as well as one extended SAR component. The extended components are used unchanged from the
[MDFPP] and are therefore not reproduced. They are listed below only for the convenience of the reader.

Extended SFR Summary of the SFR

FCS_CKM_EXT.1 Root Encryption Key

FCS_CKM_EXT.2 Data Encryption Key Generation

FCS_CKM_EXT.3 Key Encryption Key Generation

FCS_CKM_EXT.4 Key Destruction

FCS_CKM_EXT.5 TSF Wipe

FCS_CKM_EXT.6 Salt Generation

FCS_CKM_EXT.7 Bluetooth Key Generation

FCS_HTTPS_EXT.1 HTTPS Protocol

FCS_IV_EXT.1 Initialization Vector Generation

FCS_RBG_EXT.1 Random Bit Generation

FCS_SRV_EXT.1 Cryptographic Services for Apps

FCS_STG_EXT.1 Key Storage

FCS_TLSC_EXT.1 EAP-TLS Client Protocol

FCS_TLSC_EXT.2 TLS Client Protocol

FDP_ACF_EXT.1 Access Control of System Services & Files

FDP_DAR_EXT.1 Data-at-Rest Encryption

FDP_IFC_EXT.1 No Split-Tunneling VPN

FDP_STG_EXT.1 Trust Anchor Database

FDP_UPC_EXT.1 User Data Trusted Channel Communications

FIA_AFL_EXT.1 Authentication Failure Handling

FIA_BLT_EXT.1 Bluetooth User Authorization

FIA_PAE_EXT.1 802.1x Protocol

FIA_PMG_EXT.1 Password Size/Complexity Support

FIA_TRT_EXT.1 Authentication Throttling

FIA_UAU_EXT.1 Password Required to Decrypt

FIA_UAU_EXT.2 Timing of Authentication

FIA_UAU_EXT.3 Re-Authentication Conditions

FIA_X509_EXT.1 Certificate Validation Rules

FIA_X509_EXT.2 Certificate Usage Requirements

FIA_X509_EXT.3 Certificate Validation Services to Apps

FMT_MOF_EXT.1 Administrator Management Functions

FMT_SMF_EXT.1 All Management Functions

FMT_SMF_EXT.2 Remediation Actions for Unenrollment

Common Criteria Guide for Xperia Devices 21

FPT_AEX_EXT.1 Address-Space Layout Randomization

FPT_AEX_EXT.2 Memory Page Permissions

FPT_AEX_EXT.3 Overflow Protections

FPT_AEX_EXT.4 Domain Isolation

FPT_KST_EXT.1 No Plaintext Key Storage

FPT_KST_EXT.2 No Plaintext Key Transmission

FPT_KST_EXT.3 No Plaintext Key Export

FPT_NOT_EXT.1 Self-Test Notification and Failure Behavior

FPT_TST_EXT.1 Cryptographic Self-tests

FPT_TST_EXT.2 Secure Boot

FPT_TUD_EXT.1 TSF Version Queries

FPT_TUD_EXT.2 Trusted Software Updates

FTA_SSL_EXT.1 User- and TSF-Initiated Locking

FTA_WSE_EXT.1 Wireless Network Access

FTP_ITC_EXT.1 TSF Trusted Channel Communications
Extended SAR Summary of the SAR

ALC_TSU_EXT.1 Timely Security Updates

Common Criteria Guide for Xperia Devices 22

8 Security Functional Requirements
This chapter describes the Security Functional Requirements (SFRs) for the TOE. The SFRs have been taken
from [MDFPP], with selections, assignments and potential refinements being applied. Selections and
assignments performed as required by [MDFPP] are marked in bold. Refinements are marked in bold, italics
and underlined.

Note that selections, assignments or refinements already applied in [MDFPP] are not identify in this Security
Target. This Security Target also includes SFRs from appendix C of [MDFPP] based on selections made in the
baseline SFRs.

8.1 Class: Cryptographic Support (FCS)

8.1.1 Cryptographic Key Management (FCS_CKM)

8.1.1.1 Cryptographic Key Generation
FCS_CKM.1(1) – Cryptographic Key Generation

FCS_CKM.1.1(1) The TSF shall generate asymmetric cryptographic keys in accordance with a specified
cryptographic key generation algorithm.

• RSA schemes using cryptographic key sizes of 2048-bit or greater that meet the following: FIPS
PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.3;

• ECC schemes using “NIST curves” P-256, P-384 and P-521 that meet the following: FIPS PUB
186-4, “Digital Signature Standard (DSS)”, Appendix B.4.

Application note: Not all keys are used in the same way. Different keys are used for different purposes as is
described in the SFRs below.

8.1.1.2 Cryptographic key generation (WLAN)
FCS_CKM.1(2) – Cryptographic key generation

FCS_CKM.1.1(2) The TSF shall generate symmetric cryptographic keys in accordance with a specified
cryptographic key generation algorithm PRF-384 and specified cryptographic key sizes 128 bits using a Random
Bit Generator as specified in FCS_RBG_EXT.1 that meet the following: IEEE 802.11-2012.

8.1.1.3 Cryptographic Key Establishment
FCS_CKM.2.1(1) – Cryptographic key establishment

FCS_CKM.2.1(1) The TSF shall perform cryptographic key establishment in accordance with a specified
cryptographic key establishment method:

• RSA-based key establishment schemes that meets the following: NIST Special Publication 800-56B,
“Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization
Cryptography”;

and

• Elliptic curve-based key establishment schemes that meets the following: NIST Special
Publication 800-56A, “Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography”.

8.1.1.3.1 Cryptographic Key Distribution (WLAN)
FCS_CKM.2.1(2) – Cryptographic key distribution

FCS_CKM.2.1(2) The TSF shall decrypt Group Temporal Key (GTK) in accordance with a specified
cryptographic key distribution method AES Key Wrap in an EAPOL-Key frame that meets the following: NIST
SP 800-38F, IEEE 802.11-2012 for the packet format and timing considerations and does not expose the
cryptographic keys.

8.1.1.3.2 Cryptographic Key Support (REK)
FCS_CKM_EXT.1 – Extended: Cryptographic Key Support

FCS_CKM_EXT.1.1 The TSF shall support a hardware-protected REK with a key of size 256 bits.

Common Criteria Guide for Xperia Devices 23

FCS_CKM_EXT.1.2 System software on the TSF shall be able only to request NIST SP 800-108 key
derivation by the key and shall not be able to read, import, or export a REK.

FCS_CKM_EXT.1.3 A REK shall be generated by a RBG in accordance with FCS_RBG_EXT.1.

FCS_CKM_EXT.1.4 A REK shall not be able to be read from or exported from the hardware.

Application note: The element FCS_CKM_EXT.1.4 has been added as a selection-based requirement since
“hardware-protected REK” was selected in FCS_CKM_EXT.1.1.

8.1.1.3.3 Cryptographic Data Encryption Keys
FCS_CKM_EXT.2 – Extended: Cryptographic Key Random Generation

FCS_CKM_EXT.2.1 All DEKs shall be randomly generated with entropy corresponding to the security strength
of AES key sizes of 256 bits.

8.1.1.3.4 Cryptographic Key Encryption Keys
FCS_CKM_EXT.3 – Extended: Cryptographic Key Generation

FCS_CKM_EXT.3.1 All KEKs shall be 256-bit keys corresponding to at least the security strength of the keys
encrypted by the KEK.

FCS_CKM_EXT.3.2 The TSF shall generate all KEKs using one of the following methods:

a) derive the KEK from a Password Authentication Factor using PBKDF and

c) Combine the KEK from other KEKs in a way that preserves the effective entropy of each
factor by using an XOR operation, concatenating the keys and use a KDF (as described in SP 800-
108), encrypting one key with another.

Application note: The TOE uses only alternative c) for all its KEKs. Alternative a. is provided to applications,
that are not part of the TOE, such as the BackupManagerService that use a PBKDF generated KEK.

8.1.1.3.5 Cryptographic Key Destruction
FCS_CKM_EXT.4 – Extended: Key Destruction

FCS_CKM_EXT.4.1 The TSF shall destroy cryptographic keys in accordance with the specified cryptographic
key destruction methods:

• by clearing the KEK encrypting the target key,

• in accordance with the following rules:

o For volatile memory, the destruction shall be executed by a single direct overwrite consisting
of zeroes following by a read-verify.

o For non-volatile EEPROM, the destruction shall be executed by a single direct overwrite
consisting of a pseudo random pattern using the TSF’s RBG (as specified in
FCS_RBG_EXT.1), followed a read-verify.

o For non-volatile flash memory, the destruction shall be executed by a single direct overwrite
consisting of zeros followed by a read-verify.

o For non-volatile memory other than EEPROM and flash, the destruction shall be executed by
overwriting three or more times with a random pattern that is changed before each write.

FCS_CKM_EXT.4.2 The TSF shall destroy all plaintext keying material and critical security parameters when
no longer needed.

Application note: According to the [MDFPP] plaintext keying material will refer to values derived from
passwords for products entering evaluation after Quarter 3, 2015.

8.1.1.3.6 TSF Wipe
FCS_CKM_EXT.5 – Extended: TSF Wipe

FCS_CKM_EXT.5.1 The TSF shall wipe all protected data by Cryptographically erasing the encrypted
DEKs and/or the KEKs in non-volatile memory by following the requirements in FCS_CKM_EXT.4.1.

FCS_CKM_EXT.5.2 The TSF shall perform a power cycle on conclusion of the wipe procedure.

Common Criteria Guide for Xperia Devices 24

8.1.1.3.7 Cryptographic Salt Generation
FCS_CKM_EXT.6 – Extended: Salt Generation

FCS_CKM_EXT.6.1 The TSF shall generate all salts using a RBG that meets FCS_RBG_EXT.1.

Application note: The salt is generated for specific algorithms and protocols of the TSF that requires salt. Salt is
available from /dev/random which obtain its random source from the hardware secure module.

8.1.1.3.8 Cryptographic Key Generation (Bluetooth)
FCS_CKM_EXT.7 – Extended: Bluetooth Key Generation

FCS_CKM_EXT.7.1 The TSF shall randomly generate public/private ECDH key pairs every time a pairing is
done.

8.1.1.4 Cryptographic Operation (FCS_COP)

8.1.1.4.1 Confidentiality Algorithms
FCS_COP.1(1) – Cryptographic operation

FCS_COP.1.1(1) The TSF shall perform encryption/decryption in accordance with a specified cryptographic
algorithm

• AES-CBC (as defined in FIPS PUB 197, and NIST SP 800-38A) mode,

• AES-CCMP (as defined in FIPS PUB 197, NIST SP 800-38C and IEEE 802.11-2012)

and

• AES Key Wrap (KW) (as defined in NIST SP 800-38F)

• AES-GCM (as defined in NIST SP 800-38D)

• AES-XTS (as defined in NIST SP 800-38E) mode and cryptographic key sizes 128-bit key sizes and
256-bit key sizes.

Application note: The encryption algorithm AES-XTS is used for the Sony internal storage encryption.

8.1.1.4.2 Hashing Algorithms
FCS_COP.1(2) – Cryptographic operation

FCS_COP.1.1(2) The TSF shall perform cryptographic hashing in accordance with a specified cryptographic
algorithm SHA-1 and SHA-256 and message digest sizes 160 and 256 that meet the following: FIPS Pub 180-4.

Application note: SHA-1 for generating digital signatures is no longer allowed and SHA-1 for
verification of digital signatures is strongly discouraged as there may be risk in accepting these
signatures. Products entering into evaluation after Quarter 3, 2015 will be required to include SHA-2
algorithms.

8.1.1.4.3 Signature Algorithms
FCS_COP.1(3) – Cryptographic operation

FCS_COP.1.1(3) The TSF shall perform cryptographic signature services (generation and verification) in
accordance with a specified cryptographic algorithm

• RSA schemes using cryptographic key sizes of 2048-bit or greater that meet the following: FIPS PUB
186-4, “Digital Signature Standard (DSS)”, Section 4

and

• ECDSA schemes using “NIST curves” P-256, P-384 and P-521 that meet the following: FIPS
PUB 186-4, “Digital Signature Standard (DSS)”, Section 5.

8.1.1.4.4 Keyed Hash Algorithms
FCS_COP.1(4) – Cryptographic operation

FCS_COP.1.1(4) The TSF shall perform keyed-hash message authentication in accordance with a specified
cryptographic algorithm HMAC-SHA-1 and HMAC-SHA-256 and cryptographic key sizes 160, 256 and
message digest sizes 160 and 256 bits that meet the following: FIPS Pub 198-1, "The Keyed-Hash Message
Authentication Code, and FIPS Pub 180-4, “Secure Hash Standard.

Common Criteria Guide for Xperia Devices 25

8.1.1.4.5 Password-Based Key Derivation Functions
FCS_COP.1(5) – Cryptographic operation

FCS_COP.1.1(5) The TSF shall perform Password-based Key Derivation Functions in accordance with a
specified cryptographic algorithm HMAC-SHA-1, SHA-256, SHA-384, SHA-512, with 32768 iterations, and
output cryptographic key sizes 256 that meet the following: NIST SP 800-132.

Application note: The PBKDF functionality is provided by the TOE, but is not used by other TSFs for
key derivation. Instead for the other TSFs key derivation is provided using scrypt as part of the
hardware security module.

8.1.1.5 HTTPS Protocol (FCS_HTTPS)
FCS_HTTPS_EXT.1 – Extended: HTTPS Protocol

FCS_HTTPS_EXT.1.1 The TSF shall implement the HTTPS protocol that complies with RFC 2818.

FCS_HTTPS_EXT.1.2 The TSF shall implement HTTPS using TLS (FCS_TLSC_EXT.2).

FCS_HTTPS_EXT.1.3 The TSF shall notify the application and request application authorization to establish
the connection if the peer certificate is deemed invalid.

8.1.1.6 Initialization Vector Generation (FCS_IV)
FCS_IV_EXT.1 – Extended: Initialization Vector Generation

FCS_IV_EXT.1.1 The TSF shall generate IVs in accordance with Table 14: References and IV Requirements for
NIST-approved Cipher Modes.

Application note: The reference to “Table 14: References and IV Requirements for NIST-approved Cipher
Modes” is a reference to Table 14 in Annex H of the [MDFPP].

8.1.1.7 Random Bit Generation (FCS_RBG)
FCS_RBG_EXT.1 – Extended: Cryptographic Operation (Random Bit Generation)

FCS_RBG_EXT.1.1 The TSF shall perform all deterministic random bit generation services in accordance with
NIST Special Publication 800-90A using Hash_DRBG (any).

FCS_RBG_EXT.1.2 The deterministic RBG shall be seeded by an entropy source that accumulates entropy from
TSF-hardware-based noise source with a minimum of 256 bits of entropy at least equal to the greatest security
strength (according to NIST SP 800-57) of the keys and hashes that it will generate.

FCS_RBG_EXT.1.3 The TSF shall be capable of providing output of the RBG to applications running on the
TSF that request random bits.

8.1.1.8 Cryptographic Algorithm Services (FCS_SRV)
FCS_SRV_EXT.1 – Extended: Cryptographic Algorithm Services

FCS_SRV_EXT.1.1 The TSF shall provide a mechanism for applications to request the TSF to perform the
following cryptographic operations:

• All mandatory and selected algorithms in FCS_CKM.2(1)

• The following algorithms in FCS_COP.1(1): AES-CBC, AES Key Wrap, AES-GCM, AES_XTS

• All mandatory and selected algorithms in FCS_COP.1(3)

• All mandatory and selected algorithms in FCS_COP.1(2)

• All mandatory and selected algorithms in FCS_COP.1(4)

• All mandatory and selected algorithms in FCS_CKM.1(1),

• The selected algorithms in FCS_COP.1(5).

8.1.1.9 Cryptographic Key Storage (FCS_STG)

8.1.1.9.1 Secure Key Storage
FCS_STG_EXT.1 – Extended: Cryptographic Key Storage

FCS_STG_EXT.1.1 The TSF shall provide hardware-isolated secure key storage for asymmetric private keys
and symmetric keys.

Common Criteria Guide for Xperia Devices 26

FCS_STG_EXT.1.2 The TSF shall be capable of importing keys/secrets into the secure key storage upon request
of the user and applications running on the TSF.

FCS_STG_EXT.1.3 The TSF shall be capable of destroying keys/secrets in the secure key storage upon request
of the user.

FCS_STG_EXT.1.4 The TSF shall have the capability to allow only the application that imported the key/secret
the use of the key/secret. Exceptions may only be explicitly authorized by a common application developer.

FCS_STG_EXT.1.5 The TSF shall allow only the application that imported the key/secret to request that the
key/secret be destroyed. Exceptions may only be explicitly authorized by the user or a common application
developer.

8.1.1.10 TLS Client Protocol (FCS_TLSC)

8.1.1.10.1 EAP-TLS Client Protocol
FCS_TLSC_EXT.1 – Extended: EAP TLS Protocol

FCS_TLSC_EXT.1.1 The TSF shall implement TLS 1.0 and TLS 1.1 (RFC 4346), and TLS 1.2 (RFC 5246)
supporting the following ciphersuites:

• Mandatory Ciphersuites:

o TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246

• and the following ciphersuites allowed as optional in [MDFPP]:

o TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246

FCS_TLSC_EXT.1.2 The TSF shall verify that the server certificate presented for EAP-TLS chains to one of
the specified CAs.

FCS_TLSC_EXT.1.3 The TSF shall not establish a trusted channel if the peer certificate is invalid.

FCS_TLSC_EXT.1.4 The TSF shall support mutual authentication using X.509v3 certificates.

FCS_TLSC_EXT.1.5 The TSF shall present the Supported Elliptic Curves Extension in the Client Hello with the
following NIST curves: secp256r1, secp384r1 and no other curves.

8.1.1.10.2 TLS Client Protocol
FCS_TLSC_EXT.2 – Extended: TLS Protocol

FCS_TLSC_EXT.2.1 The TSF shall implement TLS 1.2 (RFC 5246) supporting the following ciphersuites:

• Mandatory Ciphersuites:

o TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246

• and the following ciphersuites allowed as optional in [MDFPP]:
o TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246
o TLS_DHE_RSA_WITH_AES_128_CBC_SHA as defined in 5246
o TLS_DHE_RSA_WITH_AES_256_CBC_SHA as defined in 4492
o TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 4492
o TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 4492
o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in RFC 4492
o TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in RFC 4492
o TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC

5289
o TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC

5289
FCS_TLSC_EXT.2.2 The TSF shall verify that the presented identifier matches the reference identifier
according to RFC 6125.

Common Criteria Guide for Xperia Devices 27

FCS_TLSC_EXT.2.3 The TSF shall not establish a trusted channel if the peer certificate is invalid.

FCS_TLSC_EXT.2.4 The TSF shall support mutual authentication using X.509v3 certificates.

FCS_TLSC_EXT.2.5 The TSF shall present the Supported Elliptic Curves Extension in the Client Hello with the
following NIST curves: secp256r1, secp384r1 and no other curves.

8.2 Class: User Data Protection (FDP)

8.2.1 Access Control (FDP_ACF)
FDP_ACF_EXT.1 – Extended: Security access control

FDP_ACF_EXT.1.1 The TSF shall provide a mechanism to restrict the system services that are accessible to an
application.

FDP_ACF_EXT.1.2 The TSF shall provide an access control policy that prevents application processes from
accessing all data stored by other application processes. Exceptions may only be explicitly authorized for such
sharing by a common application developer.

Application note: The Linux UID is determines the access rights. By default, Android will assign each
application its own unique user ID. However, if this attribute is set to the same value for two or more
applications, they will all share the same ID (provided that they are also signed by the same certificate).
Application with the same user ID can access each other's data and, if desired, run in the same process.

8.2.2 Data-At-Rest Protection (FDP_DAR)
FDP_DAR_EXT.1 – Extended: Protected Data Encryption

FDP_DAR_EXT.1.1 Encryption shall cover all protected data.

FDP_DAR_EXT.1.2 Encryption shall be performed using DEKs with AES in the XTS and CBC mode with key
size 256 bits.

Application note: The AES in XTS mode is used for the internal storage. For encryption of SD cards (extenal
storage) AES in CBC mode is used.

8.2.3 Subset Information Flow Control – VPN (FDP_IFC)
FDP_IFC_EXT.1 – Extended: Subset information flow control

FDP_IFC_EXT.1.1 The TSF shall enable all IP traffic (other than IP traffic required to establish the VPN
connection) to flow through the IPsec VPN client.

8.2.4 Certificate Data Storage (FDP_STG)
FDP_STG_EXT.1 – Extended: User Data Storage

FDP_STG_EXT.1.1 The TSF shall provide protected storage for the Trust Anchor Database.

8.2.5 Inter-TSF User Data Protected Channel (FDP_UPC)
FDP_UPC_EXT.1 – Extended: Inter-TSF user data transfer protection

FDP_UPC_EXT.1.1 The TSF provide a means for non-TSF applications executing on the TOE to use TLS,
HTTPS, Bluetooth BR/EDR, and Bluetooth LE to provide a protected communication channel between the non-
TSF application and another IT product that is logically distinct from other communication channels, provides
assured identification of its end points, protects channel data from disclosure, and detects modification of the
channel data.

FDP_UPC_EXT.1.2 The TSF shall permit the non-TSF applications to initiate communication via the trusted
channel.

8.3 Class: Identification and Authentication (FIA)

8.3.1 Authentication Failures (FIA_AFL)
FIA_AFL_EXT.1 – Extended: Authentication failure handling

Common Criteria Guide for Xperia Devices 28

FIA_AFL_EXT.1.1 The TSF shall detect when a configurable positive integer within 1 to 100 of unsuccessful
authentication attempts occur related to last successful authentication by that user.

FIA_AFL_EXT.1.2 When the defined number of unsuccessful authentication attempts has been surpassed, the
TSF shall perform wipe of all protected data.

FIA_AFL_EXT.1.3 The TSF shall maintain the number of unsuccessful authentication attempts that have
occurred upon power off.

Application note: The number of unsuccessful authentication attempts is configurable as specified as Nr 2 of
FMT_SMF_EXT.1.

8.3.2 Bluetooth Authorization and Authentication (FIA_BLT)
FIA_BLT_EXT.1 – Extended: Bluetooth User Authorization

FIA_BLT_EXT.1.1 The TSF shall require explicit user authorization before pairing with a remote Bluetooth
device.

8.3.3 Port Access Entity Authentication (FIA_PAE)
FIA_PAE_EXT.1 – Extended: PAE Authentication

FIA_PAE_EXT.1 The TSF shall conform to IEEE Standard 802.1X for a Port Access Entity (PAE) in the
“Supplicant” role.

8.3.4 Password Management (FIA_PMG)
FIA_PMG_EXT.1 – Extended: Password Management

FIA_PMG_EXT.1.1 The TSF shall support the following for the Password Authentication Factor:

1. Passwords shall be able to be composed of any combination of upper and lower case letters,
numbers, and special characters: “! @ # $ % ^ & * () + = _ / - ' " : ; , ? ` ~ \ | < > { } []”;

2. Password length up to 16 characters shall be supported.

Application note: As information to the reader. Please, consider the language setting may determine the number
of letter available for passwords as the alphabet differs between the different languages setting.

8.3.5 Authentication Throttling (FIA_TRT)
FIA_TRT_EXT.1 – Extended: Authentication Throttling

FIA_TRT_EXT.1.1 The TSF shall limit automated user authentication attempts by enforcing a delay between
incorrect authentication attempts. The minimum delay shall be such that no more than 10 attempts can be
attempted per 500 milliseconds.

8.3.6 User Authentication (FIA_UAU)

8.3.7 Protected Authentication Feedback
FIA_UAU.7 – Protected authentication feedback

FIA_UAU.7.1 The TSF shall provide only obscured feedback to the device’s display to the user while the
authentication is in progress.

8.3.8 Authentication for Cryptographic Operation
FIA_UAU_EXT.1 – Extended: Authentication for Cryptographic Operation

FIA_UAU_EXT.1.1 The TSF shall require the user to present the Password Authentication Factor prior to
decryption of protected data and encrypted DEKs, KEKs and no other keys at startup.

8.3.9 Timing of Authentication
FIA_UAU_EXT.2 – Extended: Timing of Authentication

FIA_UAU_EXT.2.1 The TSF shall allow:

Common Criteria Guide for Xperia Devices 29

• Receive calls

• Enter unlocking code

• Make Emergency call

• See notifications
• Power off

• Restart

• Take screen picture

• Record Screen Video

• Use Voice assistant
• Take picture with Camera

• Adjust volume

• Adjust display brightness

• Set to air plane mode

• Turn on and off flashlight
• Turn on and off automatic screen rotation

• Mute device/ set to not disturb mode

• Turn on/off Bluetooth

• Turn on/off Wi-Fi
on behalf of the user to be performed before the user is authenticated.

FIA_UAU_EXT.2.2 The TSF shall require each user to be successfully authenticated before allowing any other
TSF-mediated actions on behalf of that user.

8.3.10 Re-Authentication
FIA_UAU_EXT.3 – Extended: Re-Authentication

FIA_UAU_EXT.3.1 The TSF shall require the user to enter the correct Password Authentication Factor when the
user changes the Password Authentication Factor, and following TSF- and user-initiated locking in order to
transition to the unlocked state, and authenticate keystore, change password, change unlock method, allow
boot-loader to be unlocked, factory reset from settings menu.

Application note: In order to allow the boot loader to be unlocked Sony must allow boot loader unlock in SIM
lock configuration. Factory reset will disables the anti theft functionality so it must be under password
protection.

8.3.11 X509 Certificates (FIA_X509)

8.3.11.1 Validation of Certificates
FIA_X509_EXT.1 – Extended: Validation of certificates

FIA_X509_EXT.1.1 The TSF shall validate certificates in accordance with the following rules:

• RFC 5280 certificate validation and certificate path validation.

• The certificate path must terminate with a certificate in the Trust Anchor Database.

• The TSF shall validate a certificate path by ensuring the presence of the basicConstraints extension
and that the CA flag is set to TRUE for all CA certificates.

• The TSF shall validate the revocation status of the certificate using a Certificate Revocation List
(CRL) as specified in RFC 5759.

Common Criteria Guide for Xperia Devices 30

• The TSF shall validate the extendedKeyUsage field according to the following rules:

o Certificates used for trusted updates and executable code integrity verification shall have the
Code Signing purpose (id-kp 3 with OID 1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.

o Server certificates presented for TLS shall have the Server Authentication purpose (id-kp 1
with OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field.

o (Conditional) Server certificates presented for EST shall have the CMC Registration Authority
(RA) purpose (id-kp-cmcRA with OID 1.3.6.1.5.5.7.3.28) in the extendedKeyUsage field.

FIA_X509_EXT.1.2 The TSF shall only treat a certificate as a CA certificate if the basicConstraints extension is
present and the CA flag is set to TRUE.

8.3.11.2 X509 Certificate Authentication
 FIA_X509_EXT.2 – Extended: X509 certificate authentication

FIA_X509_EXT.2.1 The TSF shall use X.509v3 certificates as defined by RFC 5280 to support authentication
for EAP-TLS exchanges, and IPsec, TLS, HTTPS, and code signing for system software updates, code
signing for mobile applications, code signing for integrity verification, no additional uses.

FIA_X509_EXT.2.2 When the TSF cannot establish a connection to determine the validity of a certificate the
TSF shall not accept the certificate.

Application note: The TSF behavior when the TSF cannot establish a connection to determine the validity of a
certificate differs between use cases. In case of code signing it will not accept the certificate. In case of HTTPS it
will check with calling app, which prompts the user. Anyhow, it will no accept the certificate as such so the SFR
is implemented.

8.3.11.3 Request Validation of Certificates
FIA_X509_EXT.3 – Extended: Request Validation of certificates

FIA_X509_EXT.3.1 The TSF shall provide a certificate validation service to applications.

FIA_X509_EXT.3.2 The TSF shall respond to the requesting application with the success or failure of the
validation.

8.4 Class: Security Management (FMT)

8.4.1 Management of Functions in TSF (FMT_MOF)
FMT_MOF_EXT.1 – Extended: Management of security functions behavior

FMT_MOF_EXT.1.1 The TSF shall restrict the ability to perform the functions in column 4 of Table 1 to the
user.

FMT_MOF_EXT.1.2 The TSF shall restrict the ability to perform the functions in column 6 of Table 1 to the
administrator when the device is enrolled and according to the administrator-configured policy.

8.4.2 Specification of Management Functions (FMT_SMF)

8.4.2.1 Specification of Management Functions
FMT_SMF_EXT.1 – Extended: Specification of Management Functions

FMT_SMF_EXT.1.1 The TSF shall be capable of performing the following management functions:

Nr Management function FM
T

_SM
F_E

X
T

.1

U
sers (exclusive)

A
dm

inistrator

M
D

M
 Policy

Common Criteria Guide for Xperia Devices 31

1 Configure password policy:
a. minimum password length
b. minimum password complexity
c. maximum password lifetime
Note: Administrators cannot set the policy directly, but using an app with
(or an MDM client) they can set the policy for the device, i.e. for all users
of the device.

M – M M

2 Configure session locking policy:
a. screen-lock enabled/disabled
b. screen lock timeout
c. number of authentication failures

M – M M

3 Enable/disable the VPN protection:
a. across device
c. no other method

M – M –

4 Enable/disable NFC, Bluetooth, Wi-Fi and mobile data
Note: Bluetooth can be enabled and disabled for the whole device as well
as for specific Bluetooth profiles (types of devices).

M – M X

5 Enable/disable camera and microphone:
a. across device
c. no other method
Note: While users may specify access to the camera and the microphone
respectively on a per app basis, the MDM API can only allow or disallow
this respectively for the whole device.

M – M M

6 Specify wireless networks (SSIDs) to which the TSF may connect M – M X

7 Configure security policy for each wireless network:
a. specify the CA(s) from which the TSF will accept WLAN

authentication server certificate(s)
b. security type
c. authentication protocol
d. client credentials to be used for authentication

M – M –

8 Transition to the locked state M – M –

9 TSF wipe of protected data M – M –

10 Configure application installation policy by
a. restricting the sources of applications
b. specifying a set of allowed applications based on an
 application whitelist
c. denying installation of applications

Note: The TOE provides both whitelisting and blacklisting of applications
using application names.

M – M M

11 Import keys/secrets into the secure key storage
Note: The keys are imported in a user and application context, such as
keys will only be available only to specific users and application.

M X X –

12 Destroy imported keys/secrets and no other keys/secrets in the secure
key storage
Note: Users can only destroy all keys/secrets, not individual keys.
Administrators can, using the MDM API for factory rest destroy all
keys/secrets.

M X X –

Common Criteria Guide for Xperia Devices 32

13 Import X.509v3 certificates into the Trust Anchor Database M – M –

14 Remove imported X.509v3 certificates and default X.509v3 certificates
in the Trust Anchor Database

M – X –

15 Enroll the TOE in management M M – –

16 Remove applications M – M X

17 Update system software
Note: The TOE supports MDM policy enforcement for preventing system
software updates, not to enforce system software updates.

M – M –

18 Install applications M – M X

19 Remove Enterprise applications
Note: Enterprise applications are application that have been installed using
an MDM.

M – M –

20 Configure the Bluetooth trusted channel:
a. disable/enable the Discoverable mode (for BR/EDR)
b. change the Bluetooth device name
i. no other Bluetooth configuration

M – X –

21 Enable/disable display notification in the locked state of
f. all notifications
Note: Users may configure this on a per application basis, but the
administrator and MDM interface applies to all types notifications.

M – X X

23 Enable/disable Wi-Fi tethering, USB tethering, and Bluetooth
tethering

X – X X

35 Approve exceptions for destruction of keys/secrets by applications that did
not import the key/secret

X X X –

36 Configure the unlock banner
Note: Using the MDM interface the administrator can specify a message
that will be displayed for locked devices. This is typically used when
specific unlock messages are necessary, i.e. for device that is in an
improper state.

X – X X

39 Enable/disable
a. USB mass storage mode

X – X X

40 Enable/disable backup to locally connected system or remote system X X – –

41 Enable/disable
a. Hotspot functionality authenticated by pre-shared key
b. USB tethering authenticated by no authentication

X X – –

44 Enable/disable location services:
a. across device
b. on a per-app basis
Note: This feature is available for the whole device as well as on a per
user basis. Using an MDM it is also possible to prevent the user from
adding new users.

M – X X

45 The following list of additional management functions are provided
by the TOE:
a. Enable/disable voice command control of device functions
b. Enable/disable fingerprint (Touch ID) for unlock
c. Add and remove users (secondary and guests only)
Note: Enable/disable voice control is exclusive under the control of the
user and there is not APIs available for administrators for this.

X
X
X

X
–
X

–
X
–

–
X
–

Common Criteria Guide for Xperia Devices 33

Enable and disable fingerprint can be performed by the users, but can be
disabled by the administrator and enforced by an MDM policy, preventing
the user to use fingerprint.
The user can both add and remove users, guests, as well as MDM clients
(enrolment). Using the MDM API users can only be removed by a factory
reset. Other users, such as secondary can only remove users, but cannot
add any users.

Table 1 - Security Management Functions

	

Application note: The columns are consistent with the original table from the Protection Profile, but to make it
easier to read they have been renamed. Management functions that are provided to the user and not the
administrator are listed under “User”, indicated in [MDFPP] as FMT_MOF_EXT.1.1; Management functions
provided to the administrator (using an MDM agent API) are listed under “Administrator”; Management
functions for which the administrator may set a policy that restricts the user from performing that function are
listed in “MDM policy”, indicated in [MDFPP] as FMT_MOF_EXT.1.2.

The mandatory requirements are all implemented and indicated with an M and the optional requirements that are
implemented are indicated with an X.

8.4.2.2 Specification of Remediation Actions
FMT_SMF_EXT.2 – Extended: Specification of Remediation Actions

FMT_SMF_EXT.2.1 The TSF shall offer wipe of protected data, wipe of sensitive data, alert the
administrator and remove Enterprise applications upon unenrollment and no other triggers.

Application note: Upon unenrollment, the MDM application get a callback and can take actions like wipe it’s
data, notify admin, uninstall applications (if whitelisted by Sony). Android for work has a container based
solution that is wiped during unenrollment.

8.5 Class: Protection of the TSF (FPT)

8.5.1 Anti-Exploitation Services (FPT_AEX)

8.5.1.1 Address-Space Layout Randomization
FPT_AEX_EXT.1 – Extended: Anti-Exploitation Services (ASLR)

FPT_AEX_EXT.1.1 The TSF shall provide address space layout randomization (ASLR) to applications.

FPT_AEX_EXT.1.2 The base address of any user-space memory mapping will consist of at least 8 unpredictable
bits.

8.5.1.2 Memory Page Permissions
FPT_AEX_EXT.2 – Extended: Anti-Exploitation Services (Memory Page Permissions)

FPT_AEX_EXT.2.1 The TSF shall be able to enforce read, write, and execute permissions on every page of
physical memory.

8.5.1.3 Overflow Protection
FPT_AEX_EXT.3 – Extended: Anti-Exploitation Services (Overflow Protection)

FPT_AEX_EXT.3.1 TSF processes that execute in a non-privileged execution domain on the application
processor shall implement stack-based buffer overflow protection.

8.5.1.4 Domain Isolation
FPT_AEX_EXT.4 – Extended: Domain Isolation

FPT_AEX_EXT.4.1 The TSF shall protect itself from modification by untrusted subjects.

FPT_AEX_EXT.4.2 The TSF shall enforce isolation of address space between applications.

Common Criteria Guide for Xperia Devices 34

8.5.2 Key Storage (FPT_KST)

8.5.2.1 Plaintext Key Storage
FPT_KST_EXT.1 – Extended: Key Storage

FPT_KST_EXT.1.1 The TSF shall not store any plaintext key material in readable non-volatile memory.

Application note: The intention of this requirement is that the TOE will not write plaintext keying material to
persistent storage. For the purposes of this requirement, plaintext keying material refers to authentication data,
passwords, secret/private symmetric keys, private asymmetric keys, data used to derive keys, etc. These values
must be stored encrypted.

8.5.2.2 No Key Transmission
FPT_KST_EXT.2 – Extended: No Key Transmission

FPT_KST_EXT.2.1 The TSF shall not transmit any plaintext key material outside the security boundary of the
TOE.

8.5.2.3 No Plaintext Key Export
FPT_KST_EXT.3 – Extended: No Plaintext Key Export

FPT_KST_EXT.3.1 The TSF shall ensure it is not possible for the TOE user(s) to export plaintext keys.

8.5.2.4 Self-Test Notification (FPT_NOT)
FPT_NOT_EXT.1 – Extended: Self-Test Notification

FPT_NOT_EXT.1.1 The TSF shall transition to non-operational mode and no other actions when the following
types of failures occur:

• failures of the self-test(s)

• TSF software integrity verification failures

• no other failures

8.5.3 Reliable Time Stamps (FPT_STM)
FPT_STM.1 – Reliable time stamps

FPT_STM.1.1 The TSF shall be able to provide reliable time stamps for its own use.

8.5.4 TSF Functionality Testing (FPT_TST)

8.5.4.1 TSF Cryptographic Functionality Testing
FPT_TST_EXT.1 – Extended: TSF Cryptographic Functionality Testing

FPT_TST_EXT.1.1 The TSF shall run a suite of self-tests during initial start-up (on power on) to demonstrate
the correct operation of all cryptographic functionality.

8.5.4.2 TSF Integrity Testing
FPT_TST_EXT.2 – Extended: TSF Integrity Testing

FPT_TST_EXT.2.1 The TSF shall verify the integrity of the bootchain up through the Application Processor OS
kernel, and all binaries on RAM disk and all binaries on system partition stored in mutable media prior to its
execution through the use of a digital signature using a hardware-protected asymmetric key.

Application note: All binaries on RAM disk and code under /system is subject to integrity verification.

8.5.5 Trusted Update (FPT_TUD)

8.5.5.1 Trusted Update: TSF Version Query
FPT_TUD_EXT.1 – Extended: Trusted Update: TSF version query

FPT_TUD_EXT.1.1 The TSF shall provide authorized users the ability to query the current version of the TOE
firmware/software.

Common Criteria Guide for Xperia Devices 35

FPT_TUD_EXT.1.2 The TSF shall provide authorized users the ability to query the current version of the
hardware model of the device.

FPT_TUD_EXT.1.3 The TSF shall provide authorized users the ability to query the current version of installed
mobile applications.

8.5.5.2 Trusted Update Verification
FPT_TUD_EXT.2 – Extended: Trusted Update Verification

FPT_TUD_EXT.2.1 The TSF shall verify software updates to the Application Processor system software and
communication processor software using a digital signature by the manufacturer prior to installing those
updates.

FPT_TUD_EXT.2.2 The TSF shall never update the TSF boot integrity key.

FPT_TUD_EXT.2.3 The TSF shall verify that the digital signature verification key used for TSF updates
matches a hardware-protected public key.

FPT_TUD_EXT.2.4 The TSF shall verify mobile application software using a digital signature mechanism prior
to installation.

FPT_TUD_EXT.2.6 The TSF shall not install code if the code signing certificate is deemed invalid.

8.6 Class: TOE Access (FTA)

8.6.1 Session Locking (FTA_SSL)

8.6.1.1 TSF- and User-initiated locked state
FTA_SSL_EXT.1 – Extended: TSF- and User-initiated locked state

FTA_SSL_EXT.1.1 The TSF shall transition to a locked state after a time interval of inactivity.

FTA_SSL_EXT.1.2 The TSF shall transition to a locked state after initiation by either the user or the
administrator.

FTA_SSL_EXT.1.3 The TSF shall, upon transitioning to the locked state, perform the following operations:

a) clearing or overwriting display devices, obscuring the previous contents;

b) no other actions.

8.6.2 Default TOE Access Banners
FTA_TAB.1 – Default TOE Access Banners

FTA_TAB.1.1 Before establishing a user session, the TSF shall display an advisory warning message regarding
unauthorized use of the TOE.

8.6.3 Wireless Network Access (FTA_WSE)
FTA_WSE_EXT.1 – Extended: Wireless Network Access

FTA_WSE_EXT.1.1 The TSF shall be able to attempt connections to wireless networks specified as acceptable
networks as configured by the administrator in FMT_SMF_EXT.1.

8.7 Class: Trusted Path/Channels (FTP)

8.7.1 Trusted Channel Communication (FTP_ITC)
FTP_ITC_EXT.1 – Extended: Trusted Channel Communication

FTP_ITC_EXT.1.1 The TSF shall use 802.11-2012, 802.1X, and EAP-TLS and TLS and HTTPS protocol to
provide a communication channel between itself and another trusted IT product that is logically distinct from
other communication channels, provides assured identification of its end points, protects channel data from
disclosure, and detects modification of the channel data.

FTP_ITC_EXT.1.2 The TSF shall permit the TSF to initiate communication via the trusted channel.

Common Criteria Guide for Xperia Devices 36

FTP_ITC_EXT.1.3 The TSF shall initiate communication via the trusted channel for wireless access point
connections, administrative communication, configured enterprise connections, and no other connections.

Common Criteria Guide for Xperia Devices 37

9 Security Assurance Requirements
The security assurance requirements (SARs) are defined in the [MDFPP] and consist of the assurance
components of EAL1 as defined in the CC Part 3, augmented by ASE_SPD.1 and extended by
ALC_TSU_EXT.1. The ASE_SPD.1 is defined in CC Part 3 and ALC_TSU_EXT.1 is defined in [MDFPP].

The assurance components are taken unchanged from the [MDFPP] and are therefore not reproduced in the
Security Target.

Assurance Class Assurance Components

Security Target (ASE) Conformance claims (ASE_CCL.1)

Extended components definition (ASE_ECD.1)

ST introduction (ASE_INT.1)

Security objectives for the operational environment
(ASE_OBJ.1)

Stated security requirements (ASE_REQ.1)

Security Problem Definition (ASE_SPD.1)

TOE summary specification (ASE_TSS.1)

Development (ADV) Basic functional specification (ADV_FSP.1)

Guidance documents (AGD) Operational user guidance (AGD_OPE.1)

Preparative procedures (AGD_PRE.1)

Life cycle support (ALC) Labeling of the TOE
(ALC_CMC.1)

TOE CM coverage (ALC_CMS.1)

Timely Security Updates (ALC_TSU_EXT)

Tests (ATE) Independent testing – sample (ATE_IND.1)

Vulnerability assessment (AVA) Vulnerability survey (AVA_VAN.1)

Common Criteria Guide for Xperia Devices 38

10 TOE Summary Specification
This chapter describes how the security functional requirements are implemented by the security functionality of
the TOE. This chapter is structured in accordance with the security functional requirements in chapter 6 of this
document, which follows the structure of the structure of the security functional requirements in [MDFPP].

10.1 Cryptographic Support
Cryptographic support is provided in different ways and on different levels by the TOE. On a low level the TOE
provides a Trusted Execution Environment (TEE) by using the ARM TrustZone technology. It is a system on a
chip (SoC) that provides the TOE with a hardware-backed, strong security services to the Android OS, to
platform services and even to third-party apps. The TEE is an isolated environment that runs in parallel with the
operating system.

The core components for cryptographic support are shown.

	

Figure 2, Cryptographic abstraction layer and access to the Keymaster

Access to the Keystore is provided by the Keymaster API, the Hardware Abstraction Layer (HAL). The
Keystore provides the following categories of operations:

• Key generation of symmetric and asymmetric keys

• Import and export of asymmetric keys (no key wrapping)

• Import of raw symmetric keys (again, no wrapping)

• Asymmetric encryption and decryption with appropriate padding modes

• Asymmetric signing and verification with digesting and appropriate padding modes

• Symmetric encryption and decryption in appropriate modes, including an AEAD mode

• Generation and verification of symmetric message authentication codes

• Random number generation (not exposed as an API, but internally used for generation of keys,
Initialization Vectors, random padding and other elements of secure protocols that require randomness)

Protocol elements, such as purpose, mode and padding, as well as access control constraints, are specified when
keys are generated or imported and are permanently bound to the key, ensuring the key cannot be used in any
other way.

The TOE is using FIPS 140-2 validated Qualcomm QTI Cryptographic Modules for hardware protection of keys
and for cryptographic operations. The Xperia X is using Snapdragon 650 and Xperia X Performance is using
Snapdragon 820.

10.1.1 Cryptographic key management
This section describes how keys are generated, derived, combined and destroyed. There are two major types of
keys: Data encryption keys (DEKs) and key encryption keys (KEKs). Root encryption keys (REKs) are
considered to be KEKs. DEKs are used to protect data (as in the data at rest (DAR) protection. KEKs are used to
protect other keys – DEKs, other KEKs and other types of keys stored by the user or applications. The following
diagram shows the TOE key hierarchy to help the reader to understand the key management and to demonstrate
compliance with [MDFPP].

Common Criteria Guide for Xperia Devices 39

Figure 3 - Key Management Diagram for Full Disk Encryption

The keys in the diagram above are further described in the table below.

Name Description Origin Memory Destroyed
persistently

REK Root Encryption Key, which is generated in
the production facility and written into HW
when manufacturing the device.

External RNG
(Factory)

Secure
Hardware

Never

KEK_1 KEK for SD card file level encryption Derived TEE N/A

KEK_2 KEK for keys in keystore Derived TEE N/A

DEK_1 DEK for internal storage encryption, which
is generated in TEE and at first start-up and
is stored together with the user password.
The user must submit the password during
startup to allow TEE to decrypt the file
system. It’s a 256-bit key used for AES in
XTS mode.

RNG (TEE) TEE • Factory reset
• Flash without

keeping user data

DEK_2 DEK for external SD Card storage
encryption, which is created when user
activates this functionality. It’s a 256-bit
key used for AES in CBC mode.

RNG (Linux) Normal • Factory reset
• Flash without

keeping user data

K_1 Category of keys for android applications.
These keys are stored in HW backed
keystore. See
https://developer.android.com/training/articl
es/keystore.html#SecurityFeatures
The application creates a key in keystore by
calling API to generate a key in keystore or

RNG (TEE)
or imported

TEE • Application calls
delete key

• Uninstall
application

• Clear all
credentials in
settings menu

Common Criteria Guide for Xperia Devices 40

by importing an existing key into the
keystore.

• Factory reset
• Complete flash

without keeping
user data

K_2 Same as K_1, but in this category the
application has tagged the key to accessible
only when the user has submitted the
password. See
https://developer.android.com/training/articl
es/keystore.html#UserAuthentication

RNG (TEE)
or imported

TEE • Application calls
delete key

• Uninstall
application

• Clear all
credentials in
settings menu

• Factory reset
• Complete flash

without keeping
user data

Table 2 - Description of the different types of keys used by the TOE

10.1.2 Cryptographic primitives
Cryptographic primitives provided by the TOE:

RSA

• 2048, 3072 and 4096-bit key support is provided

• Support for public exponent F4 (2^16+1)

• Required padding modes for RSA signing are:
o No padding
o RSASSA-PSS (KM_PAD_RSA_PSS)
o RSASSA-PKCS1-v1_5 (KM_PAD_RSA_PKCS1_1_5_SIGN)

• Required digest modes for RSA signing are:
o No digest
o SHA-256

• Required padding modes for RSA encryption/decryption are:
o Unpadded
o RSAES-OAEP (KM_PAD_RSA_OAEP)
o RSAES-PKCS1-v1_5 (KM_PAD_RSA_PKCS1_1_5_ENCRYPT)

ECDSA

• 224, 256, 384 and 521-bit key support are required, using the NIST P-224, P-256, P-384 and P-521
curves, respectively

• Required digest modes for ECDSA are:
o No digest (deprecated, will be removed in the future)
o SHA-256

AES

• 128 and 256-bit keys are provided

• CBC, CTR, ECB, GCM and XTS. The GCM implementation does not allow the use of tags smaller
than 96 bits or nonce lengths other than 96 bits.

• Padding modes KM_PAD_NONE and KM_PAD_PKCS7 does not support CBC and ECB modes.
With no padding, CBC or ECB mode encryption fails if the input isn't a multiple of the block size.

• HMAC SHA-256, with any key size up to at least 32 bytes.
SHA

• SHA-1

• SHA-224

Common Criteria Guide for Xperia Devices 41

• SHA-384

• SHA-512

10.1.3 Key access control
The TOE provides key access control for the use of keys. Although hardware-based keys that can never be
extracted from the device, the unrestricted use of them may cause these keys to be exfiltrated.

Access controls are defined as an "authorization list" of tag/value pairs, where the authorization tags are 32-bit
integers and the values are a variety of types. Some tags may be repeated to specify multiple values. Whether a
tag may be repeated is specified in the documentation for the tag. When a key is created, the caller specifies an
authorization list. The Keymaster implementation underlying Keystore will modify the list to specify some
additional information, such as whether the key has rollback protection, and return a final authorization list,
encoded into the returned key blob. Any attempt to use the key for any cryptographic operation fails if the final
authorization list is modified.

10.1.4 Cryptographic Protocols
The TOE provides a number of cryptographic mechanisms and protocols that are used by the TSF and are
available to applications. They are provided by Qualcomm with the QTI Crypto Engine ,QTI Inline Crypto
Engine and QTI Software Library; The Xperia OpenSSL library; The BoringSSL library; and the Broadcom
implementation.

1. QTI Crypto Engine and QTI SW lib

a. used in Keystore/Keymaster module, Android Applications, kernel, TEE (trusted execution
environment)

b. accessed through Java API, native APIs, kernel

2. QTI Inline Crypto Engine

a. Used in full disk encryption

b. Accessed through kernel

3. Xperia OpenSSl library

a. Used in VPN and SD card encryption

b. Accessed through native APIs, kernel

4. BoringSSL library

a. used in TLS, EAP-TLS, HTTPS, WPA2, Android Applications

b. can be accessed through Java APIs, native APIs

5. Broadcom

a. Used and accessed only by the Bluetooth component itself

Below is a summary of the cryptographic mechanisms and their implementation.

QTI Crypto Engine

Algorithm Standard NIST Cert# SFR

AES 128/256 CBC, ECB,
CTR, XTS, CCM

FIPS 197
SP 800-38 A

Cert. 3526 FCS_COP.1(1)

SHS SHA-1/256 FIPS 180-4 Cert. 2908, 2909, 2930 FCS_COP.1(2)

HMAC SHA-1/256 FIPS 198-1
FIPS 180-4

Cert. 2254 FCS_COP.1(4)

DRBG 800-90A SP 800-90A Cert. 885 FCS_RBG_EXT.1

QTI Inline Crypto Engine

Algorithm Standard NIST Cert# SFR

Common Criteria Guide for Xperia Devices 42

AES 256 XTS FIPS 197
SP 800-38 A

Cert. 3556, 3558 FCS_COP.1(1)

QTI Software Library

Algorithm Standard NIST Cert# SFR

RSA
Sig(gen)/Sig(ver)/Key(gen)

FIPS 186-2
FIPS 186-4

No, covered during
evaluator testing

FCS_CKM.1(1)
FCS_COP.1(3)

ECDSA
PKG/PKV/Sig(gen)/Sig(ver)

FIPS 186-4 No, covered during
evaluator testing

FCS_CKM.1(1)
FCS_COP.1(3)

Xperia OpenSSL Library

Algorithm Standard NIST Cert# SFR

AES 128/256 CBC, ECB,
CTR, XTS, CCM, GCM

FIPS 197
SP 800-38 A

Cert. 3329 FCS_COP.1(1)

SHS SHA-1/224/256/384/512 FIPS 180-4 Cert. 2762 FCS_COP.1(2)

HMAC SHA-
1/224/256/384/512

FIPS 198-1
FIPS 180-4

Cert. 2120 FCS_COP.1(4)

RSA Sig(gen)/Sig(ver) FIPS 186-4 Cert. 1709 FCS_CKM.1(1)
FCS_COP.1(3)

ECDSA
PKG/PKV/Sig(gen)/Sig(ver)

FIPS 186-4 Cert. 658 FCS_CKM.1(1)
FCS_COP.1(3)

CVL ECC CDH
P-224/256/384/521
K-233/283/571
B-233/283/409/571

SP 800-56A Cert. 485 FCS_CKM.1(1)
FCS_COP.1(3)

BoringSSL Library

Algorithm Standard NIST Cert# SFR

AES 128/256 CBC, CCM,
GCM, KW

FIPS 197
SP 800-38 A

Cert. 4103
Cert. 4105

FCS_COP.1(1)

SHS SHA-1/256/384/512 FIPS 180-4 Cert. 3376
Cert. 3377

FCS_COP.1(2)

HMAC SHA-1/256/384/512 FIPS 198-1
FIPS 180-4

Cert. 2680
Cert. 2681

FCS_COP.1(4)

RSA
SIG(gen)/SIG(ver)/Key(gen)

FIPS 186-4 Cert. 2220
Cert. 2221

FCS_CKM.1(1)
FCS_COP.1(3)

ECDSA
PKG/PKV/Seg(gen)/Sig(ver)

FIPS 186-4 Cert. 929
Cert. 930

FCS_CKM.1(1)
FCS_COP.1(3)

CVL ECC CDH P-
224/256/384/521

SP 800-56A Cert. 917
Cert. 918

FCS_CKM.1(1)

Broadcom

Algorithm Standard NIST Cert# SFR

AES 128 ECB, CBC, CTR FIPS 197 Cert. 3678 FCS_CKM.1(2)
FCS_COP.1(1)

Table 3 - Cryptographic Protocols and their Implementation

Common Criteria Guide for Xperia Devices 43

10.2 User Data Protection
The Android security model for separation and access control is based in part on the concept of application
sandboxes. Each application runs in its own sandbox. Sandboxes are defined by the creation of a unique Linux
UID for each application at time of installation. It also uses the mandatory access control (MAC) provided by
Security-Enhanced Linux (SELinux) to further define the boundaries of the Android application sandbox.
Mandatory access control (MAC) applies to all processes, even processes running with root/superuser privileges
(a.k.a. Linux capabilities). SELinux enhances Android security by confining privileged processes and
automating security policy creation. SELinux protects and confine system services, control access to application
data and system logs, reduce the effects of malicious software, and protect users from potential flaws in code on
mobile devices.

These mechanisms of Linux UID and SELinux MAC are used to enforce access control between processes and
resources/data, including external interfaces.

Figure 4 - Access to sensitive user data, input devices and metadata is available only through protected APIs that will
perform permission checks

By default, an Android application can only access a limited range of system resources. The system manages
Android application access to resources that, if used incorrectly or maliciously, could adversely impact the user
experience, the network, or data on the devices.

These restrictions are implemented in one of three different ways. Some capabilities are restricted by an
intentional lack of APIs to the sensitive functionality (e.g. there is no Android API for directly manipulating the
SIM card). In some instances, the separation of roles provides a security measure, as with the per-application
isolation of storage. In other instances, the sensitive APIs are intended for use by trusted applications and
protected through the Android permission mechanism.

Access control to devices include access to the following sensitive devices and functions are the following:

• Camera functions (picture and microphone)

• Location data (GPS)

• Bluetooth functions

• Telephony functions

• SMS/MMS functions

• Network/data connections (access and device information)

These resources are only accessible through the operating system. To make use of the protected APIs on the
device, an application must be granted the capabilities. Users grant permissions to apps while the app is running,
not when they install the app. This approach streamlines the app install process, since the user does not need to
grant permissions when they install or update the app. It also gives the user more control over the app's
functionality; for example, a user could choose to give a camera app access to the camera but not to the device
location. The user can revoke the permissions at any time, by going to the app's Settings screen. This is described
in http://developer.android.com/training/permissions/requesting.html . Default permission are specified in the

Common Criteria Guide for Xperia Devices 44

class android.Manifest.permission and described in
https://developer.android.com/reference/android/Manifest.permission.html.

Applications may (in addition) declare their own permissions for other applications to use. Such permissions are
not listed in the above location.

When defining a permission a protectionLevel attribute tells the system how the user is to be informed of
applications requiring the permission, or who is allowed to hold a permission. The following protection levels
are available:

Definition of protection levels

normal The default value. A lower-risk permission that gives requesting
applications access to isolated application-level features, with minimal
risk to other applications, the system, or the user. The system
automatically grants this type of permission to a requesting application at
installation, without asking for the user's explicit approval (though the
user always has the option to review these permissions before installing).

dangerous A higher-risk permission that would give a requesting application access
to private user data or control over the device that can negatively impact
the user. Because this type of permission introduces potential risk, the
system may not automatically grant it to the requesting application. For
example, any dangerous permissions requested by an application may be
displayed to the user and require confirmation before proceeding, or some
other approach may be taken to avoid the user automatically allowing the
use of such facilities.

signature A permission that the system grants only if the requesting application is
signed with the same certificate as the application that declared the
permission. If the certificates match, the system automatically grants the
permission without notifying the user or asking for the user's explicit
approval.

signatureOrSystem A permission that the system grants only to applications that are in the
Android system image or that are signed with the same certificate as the
application that declared the permission. Please avoid using this option, as
the signature protection level should be sufficient for most needs and
works regardless of exactly where applications are installed. The
"signatureOrSystem" permission is used for certain special situations
where multiple vendors have applications built into a system image and
need to share specific features explicitly because they are being built
together.

See http://developer.android.com/guide/topics/manifest/permission-element.html for more details on how this is
implemented and used.

An example of a privilege with “normal” protection level is to give applications to
android.permission.ACCESS_NETWORK_STATE, which would give applications access information
about networks.

An example of a privilege with “dangerous” protection level is to give applications to
android.permission.READ_CALENDAR, which would allow applications read access to the user's
calendar data.

An example of a privilege with “signatureOrSystem” protection level is to give applications to
com.android.voicemail.permission.READ_VOICEMAIL, which would allow applications read
voicemails in the system.

Details on creating and using application specific permissions are described at
https://developer.android.com/guide/topics/security/security.html.

There are some device capabilities, such as the ability to send SMS broadcast intents, that are not available to
third-party applications, but that may be used by applications pre-installed by the OEM. These permissions use
the signatureOrSystem permission.

Common Criteria Guide for Xperia Devices 45

10.3 Identification and Authentication
The user needs to successfully authenticate before access is given to applications and data. Authentication is
performed during booting of the device as well as during unlocking screen-locking. The TOE maintains a
counter of failed authentication attempts. After a certain (configurable) number of consecutive failed
authentications the TSF will perform a factory reset, which means that it will wipe all data and application from
the TOE. The counter is written into non-volatile memory and will remain over power-cycles and will only be
reset upon a successful authentication. The number of failed authentications is administrator configurable but
should at a minimum be set to 1 and maximum 100 in the evaluated configuration.

The TOE support Bluetooth version 4.0, which enables secure connections to other devices. The TOE supports
faster data transfer with Enhanced Data Rate (EDR) and also has support not only LMP-pairing (aka PIN-code
based), but also Secure Simple Pairing (SSP), enabling Public Key Infrastructure (PKI) encryption that protects
against Man-in-the- middle (MITM) eavesdropping attacks and safeguards the integrity of the communication.

Before pairing with a Bluetooth device the TOE requires the explicit authorization from the user. Pairing with
another device using LMP-pairing means that the TOE requires that the user either confirms that a displayed
numeric passcode matches between the two devices or that the user enter (or choose) a numeric passcode that the
peer device generates (or must enter). Secure Simple Pairing (SSP) may use the authentication mode “Just
works”. As the name implies, this method just works, without PIN entry, but still requires user confirmation.
This method is typically used by headsets with very limited IO capabilities, and is more secure than the fixed
PIN mechanism for this limited set of devices uses for legacy pairing.

The TOE can join WPA2-802.1X (802.11i) wireless networks requiring EAP-TLS authentication, acting as a
client/supplicant (and in that role connect to the 802.11 access point and communicate with the 802.1X
authentication server).

The Android operating system provides applications the package java.security.cert Java API Class of methods
validating certificates and certification paths (certificate chains establishing a trust chain from a certificate to a
trust anchor). The API is documented in http://developer.android.com/reference/java/security/cert/package-
summary.html

This package provides all the classes and all the interfaces needed to generate, administer and verify X.509
certificates. Functionality for parsing certificate, extracting information from them, validating and verifying the
information they contains are provided. Exception are generated mainly for three reasons:

• if the certificate's encoding is broken (CertificateEncodingException)

• if the certificate's time stamp is not valid (CertificateExpiredException)

• or if the validation's path is false (CertPathValidatorException).

10.4 Security Management
The TOE supports the following types of users:

• Primary – The first user added to a device. The primary user cannot be removed except by factory reset.
This user also has some special privileges and settings only it can set. The primary user is always
running even when other users are in the foreground.

• Secondary – Any user added to the device other than the primary user. They can be removed by either
themselves or the primary user and cannot impact other users on a device. Secondary users can run in
the background and will continue to have network connectivity when they do.

• Guest – A guest user is a temporary secondary user with an explicit option to quick delete the guest user
when its usefulness is over. There can be only one guest user at a time.

• Administrator – The administrator is acting remotely using a Mobile Device Management (MDM)
system acting through an MDM agent on the TOE. Neither the MDM nor the MDM agent are parts of
the TOE. So role of the administrator is describes in what the MDM API of the TOE can do. There are
two different MDM APIs available with different functionality available: The Xperia in Business and
the Android for Work.

Common Criteria Guide for Xperia Devices 46

See also https://source.android.com/devices/tech/admin/multi-user.html for more information on these roles. The
user, in the context of this ST, is the primary, secondary and guest user.

There are certain management functions that are provided to the user and not the administrator, because there
they are not supported by the administrator APIs. There are management functions for which the administrator
may set a policy that restricts the user from performing that function. This is specified into Table 1 of the the
FMT_SMF_EXT.1.1.

10.5 Protection of the TSF

10.5.1 Address Space Randomization and Protection against Buffer Overflow
The TOE's Android operating system provides Address Space Layout Randomizer (ASLR) and ensures that
system applications and libraries are stored in random locations in the memory. The Android OS uses this
randomization to protect the device against exploitation of the memory, and against malware getting installed on
the device with the risk of corrupting the memory. ASLR prevents Return-Oriented Programming (ROP) attacks.
Most binaries are randomized when executed because they are linked with the PIE (Position Independent
Executable) flag. The linkers are randomized in the process address space. The Android OS has full stack,
heap/brk, lib/mmap, linker, and executable ASLR. Randomization is done utilizing a random number provided
by the Linux kernel to provide 8 unpredictable bits to the base address of any user-space memory mapping.

The TOE's Android operating system provides the ProPolice mechanisms to prevent stack buffer overruns (-
fstack-protector) in addition to taking advantage of hardware-based hardware-based No eXecute (NX) to prevent
code execution on the stack and heap. This protection is used for all TSF executable binaries and libraries. It is
documented in https://source.android.com/security/enhancements/enhancements41.html

10.5.2 Separation and Sandboxing
The TOE’s Android platform takes advantage of the Linux user-based protection as a means of identifying and
isolating application resources. The Android system assigns a unique user ID (UID) to each Android application
and runs it as that user in a separate process. This approach is different from other operating systems (including
the traditional Linux configuration), where multiple applications run with the same user permissions.

This sets up a kernel-level Application Sandbox. The kernel enforces security between applications and the
system at the process level through standard Linux facilities, such as user and group IDs that are assigned to
applications. By default, applications cannot interact with each other and applications have limited access to the
operating system. If application A tries to do something malicious like read application B's data or dial the phone
without permission (which is a separate application), then the operating system protects against this because
application A does not have the appropriate user privileges. The sandbox is simple, auditable, and based on
decades-old UNIX-style user separation of processes and file permissions.

Since the Application Sandbox is in the kernel, this security model extends to native code and to operating
system applications. All of the software above the kernel in including operating system libraries, application
framework, application runtime, and all applications run within the Application Sandbox. On some platforms,
developers are constrained to a specific development framework, set of APIs, or language in order to enforce
security. On Android, there are no restrictions on how an application can be written that are required to enforce
security; in this respect, native code is just as secure as interpreted code.

In some operating systems, memory corruption errors generally lead to completely compromising the security of
the device. This is not the case in Android due to all applications and their resources being sandboxed at the OS
level. A memory corruption error will only allow arbitrary code execution in the context of that particular
application, with the permissions established by the operating system.

10.5.3 Hardware Protection of Keystore
The keys in the Keystore are relying on the hardware backer TEE for its protection and access is controlled for
the hardware-backed keys. Access controls are specified during key generation and enforced for the lifetime of
the key. Keys can be restricted to be usable only after the user has authenticated, and only for specified purposes
or with specified cryptographic parameters. For more information, please see the Implementer's Reference.

The Android Keystore API and the underlying Keymaster Hardware Abstraction Layer (HAL) provides a set of
cryptographic primitives to allow the implementation of protocols using access-controlled, hardware-backed
keys. In addition to expanding the range of cryptographic primitives, Keystore in Android provides the
following:

Common Criteria Guide for Xperia Devices 47

• A usage control scheme to allow key usage to be limited, to mitigate the risk of security compromise
due to misuse of keys

• An access control scheme to enable restriction of keys to specified users, clients, and a defined time
range

HAL implementations must not perform any sensitive operations in user space, or even in kernel space. Sensitive
operations are delegated to a secure processor reached through some kernel interface. Access to the Keystore is
provided by the Keymaster API, the Hardware Abstraction Layer (HAL). Section 10.1 is showing how access is
provided to the Keystore and what operations are available

The TOE is also using the FIPS 140-2 validated Qualcomm QTI Crypto Engine Core for protection of certain
keys and for some cryptographic operations.

10.5.4 Full Disk Encryption
Android full disk encryption is based on dm-crypt, which is a kernel feature that works at the block device layer.
The encrypted key is stored in the crypto metadata. Hardware backing is implemented by using Trusted
Execution Environment’s (TEE) signing capability. In order to make the key resilient against off-box attacks,
this algorithm by signing the resultant key with a stored TEE key. The resultant signature is then turned into an
appropriate length key by one more application of scrypt. This key is then used to encrypt and decrypt the master
key. The TOE does not provide any way to export plaintext DEKs or KEKs (including all keys stored in the
keystore) as the TOE chains all KEKs to the HEK/REK. The AES in XTS mode is used for the internal storage.
For encryption of SD cards (external storage) AES in CBC mode is used.

10.5.5 Secure Boot and Self-test
The Android operating system of the TOE supports verified boot through the optional device-mapper-verity
(dm-verity) kernel feature, which provides transparent integrity checking of block devices. dm-verity helps
prevent persistent rootkits that can hold onto root privileges and compromise devices. This feature helps Android
be sure when booting a device it is in the same state as when it was last used. The dm-verity feature lets you look
at a block device, the underlying storage layer of the file system, and determine if it matches its expected
configuration. It does this using a cryptographic hash tree. For every block (typically 4k), there is a SHA256
hash.

Common Criteria Guide for Xperia Devices 48

Figure 5 - Verified boot flow

The boot chain consists of three major steps. First the boot loader is verified using the hardware root of trust.
Then the boot loader verifies the boot partition. Then the kernel verifies the system partition. This is described in
Android documentation http://source.android.com/security/verifiedboot/verified-boot.html.

When the self-test of the verified boot fails, the TOE transitions to a non-operational mode. The user may
attempt to power-cycle the TOE to see if the failure condition persists, and if it does persist, the user may attempt
to boot to the recovery mode/kernel to wipe data and perform a factory reset in order to recover the device.

The TOE requires a reliable time for the TLS certificate validation and key store applications. These TOE
components obtain time from the TOE using system API calls. An application cannot modify the system time, as
mobile applications need the android “SET_TIME” permission to do so. Likewise, only a process with root
privileges can directly modify the system time using system-level APIs. The TOE uses the Cellular Carrier time
(obtained through the Carrier’s network time server) as a trusted source; however, the user can also manually set
the time through the TOE’s user interface.

Time: check if NTP or carriers network time is used

• User can enable/disable to set automatic network time (NITZ and NTP) to system clock via settings
menu. Default enabled.

• NITZ from carrier network is used when it’s available

• If the phone has not received a NITZ update within 24 hours it fetches NTP time

The time functions is used as a security functions for:

• Validation of application signature

• Certificate validation such as TLS, VPN, Secure Mail

Note: The system clock is not used in certificate validation during secure boot. Secure boot must work even
when time is lost, data is lost and without access to a network. For example fresh out of factory or after

Common Criteria Guide for Xperia Devices 49

completely lost all battery including backup battery. Secure boot don’t trust anything that comes from Linux
side.

10.5.6 Software Firmware Control and Updates
The user can obtain the version of the TOE software/firmware (Model number Android version, Baseband
version, Kernel version and Build number). This is done using the menus of the user interface “System Settings-
>Security->About phone”.

Trusted updates are performed using Firmware Over the Air (FOTA) functionality as illustrated and described
below.

Figure 6 - The FOTA trusted update process

The aFOTA server is responsible for creation of FOTA update packages for system firmware for Sony Xperia
devices. FOTA package is published via UEP for Update Center to download via external networks. After
download Update Center reboots into software update mode, where Sony FOTA Update Agent (UA) is able to
update all necessary partitions to update system software. This could include modem CPU SW, depending on
platform configuration. Partitions is updated as a binary pattern, included any image signatures and DM verity
hashes. FOTA update package might include instruction to update values in Trim Area. FOTA package is
securely signed in backend-systems at Sony. A FOTA package is only applied if the signature of the FOTA
package is valid. The TOE will also check the new image to ensure that it is not older than the current image,
and if so, the TOE not perform the update the TOE software. Internal Firmware for NFC and similar chipsets is
updated after the new system software is started. UA do not support update of any security related keys. All
checks of digital signatures are done via Sony Security library.

The Sony FOTA Update Agent (UA) is executed from both normal Android Kernel and the FOTA kernel. The
FOTA UA executable is built-in in the kernel romfs. Both Android kernel and FOTA kernel is verified by boot
loader. The UA access to the platform is restricted by SE Linux rules and other protective mechanisms. The
Sony FOTA kernel is using the standard ‘recovery’ domain as Google recovery kernel. UA do not have access to
any security related keys. UA have an internal state machine to recover for power loss or system crash to be able
to continue from previous state. When state is recovered the integrity and signature of FOTA package is always
checked again. Images can be completely overwritten or updated via a delta. Before FOTA update starts the
current system software is matched against the FOTA package information making sure it matches the device.
Applications is not installed separately by UA. The Sony Update Center (UC) may download and install
Applications. This is done using the Android Package Installer.

ALC_TSU_EXT: Sony Mobile works with suppliers and other partners to ensure that products and services
receive security patches. Everyone is encouraged to report security and privacy issues concerning Sony Mobile
products and services by emailing softwaresecurity@sonymobile.com (more details can be found on
https://www.sonymobile.com/global-en/software-security/). Sony Mobile’s security and privacy team will work
together with the submitter, involving partners if necessary, to resolve issues in our products and services. Sony
Mobile aims to deploy available patches as soon as possible. Xperia smartphones are kept updated within normal
and regular software maintenance, both directly to open-market devices and via our carrier partners, so timings
can vary by region and/or operator.

10.6 TOE Access
An unlocked TOE will transit into a locked state after a certain time of user inactivity. The time interval is
configurable by the user and administrator (from 15 seconds to 10 minutes). The user or administrator may also
explicitly lock the TOE by pressing the on/off button or by the administrator using an MDM system. In a locked

Common Criteria Guide for Xperia Devices 50

state the TOE will be able to display time and date, notifications, missed calls, text messages, signal strength and
battery life. The level of information shown on the locked device is configurable by the user and the
administrator. The TOE can be configured to display a user-specified message on the locked screen.

The TOE can be configured to display a user defined lock message when the device is locked. Such a message
can also be specified by the administrator over the MDM interface when the device is locked.

The TOE can connect to wireless networks (WiFi), but is restricted only to connect to those networks that
selected by the user or administrator using an MDM. The list of networks is specified by the SSID for these
networks. The administrator (using the TOE’s MDM APIs) can disable USB mass storage mode.

10.7 Trusted Path and Trusted Channels
The TOE provide mutually authenticated and encrypted channels using 802.11-2012, 802.1X, EAP-TLS, TLS to
provide a communication channel between itself and another trusted IT product.

Common Criteria Guide for Xperia Devices 51

10.8 Mapping to the Security Functional Requirements
The following table provides a mapping of the SFRs defined in chapter 5 of this ST to the functions implemented
by the TOE, referring to the previous sections of the TOE Summary Specification where additional information
is required.

SFR Comment

FCS_CKM.1(1) RSA and ECC key generation are functions of the key master module of
the TOE. The module can generate RSA key pairs with modulus size of
2048 that meets the following: FIPS PUB 186-4, “Digital Signature
Standard (DSS)”. ECC key pairs can be generated for NIST curves P-256,
P-384 and P-521 that meet the following: FIPS PUB 186-4.

FCS_CKM.1(2) The PRF-384 key generation is implemented as defined in IEEE 802.11-
2012, "Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications", section 11.6.1.2.
It is implemented as part of the WPA implementation and is used for the
key generation of AES keys when the CCMP cipher (defined in section
11.4.3.1 of IEEE 802.11-2012 is used. The Broadcom chipset BCM4359
used by the TOE is NIST validated with NIST ID 3678. The Random Bit
Generator used is the one of the Qualcomm platform. Compliance to the
requirements of FCS_RBG_EXT.1 are addressed in the Entropy
Assessment Report from Qualcomm.
The TOE uses PRF384 for WPA2 derivation of 128-bit AES Temporal
Key and also employs its OpenSSL AES-256 DRBG when generating
random values use in the EAP-TLS and 802.11 4-way handshake.

FCS_CKM.2.1(1) The RSA and ECC based key establishment are functions of the key
master module. The following list of key establishments schemes are
supported: The RSA-based key establishment schemes meets the NIST
Special Publication 800-56B, “Recommendation for Pair-Wise Key
Establishment Schemes Using Integer Factorization Cryptography”; The
Elliptic curve-based key establishment schemes meets the NIST Special
Publication 800-56A, “Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography”.
When setting up a TLS session, the TOE acts as a receiver, any decryption
errors which occur during the key establishment are presented to the user
at a highly abstracted level, such as a failure to connect.

FCS_CKM.2.1(2) The WLAN AES Key Wrap in an EAPOL-Key frame is implemented as
defined in NIST SP 800-38F and IEEE 802.11-2012, "Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY)
Specifications", sections 11.6.2 and 11.6.3. Unwrap of the GTK is using
AES Key Wrap in an EAPOL-Key frame. Upon receiving an EAPOL
frame, the TOE will check the frame to ensure that it is a proper EAPOL
message and then decrypt the GTK using the KEK, thus ensuring that it
does not expose the Group Temporal Key (GTK).

FCS_CKM_EXT.1 The TOE supports a device unique Root Encryption Key (REK) that is
generated and installed in the production environment. The availability of
a trusted execution environment (TEE) in a system on a chip (SoC)
provides the TOE with a hardware-backed, strong security services to the
Android OS, to platform services, and even to third-party apps. The TOE
uses this hardware protected keystore for storing the REK. It does not
provide any way to export plaintext REK. A FIPS 140-2 validated security
module (NIST ID 2614) ensures that the key is protection from being
exported or derived. The REK is deterministically derived from the
Primary Hardware Key generated and during the Qualcomm chip
production. The TOE generates the fuse value during manufacturing using
its hardware DRBG. It is imported and burnt into the Qualcomm chip
during chip manufacturing. The TEE does not allow direct access to the

Common Criteria Guide for Xperia Devices 52

REK but provides access to a derived HEK (Hardware Encryption Key),
which is derived from the REK through a KDF function for encryption
and decryption.

FCS_CKM_EXT.2 All the DEKs are generated using the RBG of the FIPS validated
hardware module and they are AES keys with 256 bit key size.

FCS_CKM_EXT.3 The TOE can generate the KEKs in two different ways. It can be
generated using a password based key derivation function (PBKDF) or
using a RGB as defined in FCS_RBG_EXT.1. The KEKs are always AES
256-bit keys.
Applications such as the BackupManagerService  and other none TOE
applications may use a KEK generated by PBKDF while most
applications are using the KEK of the TrustZone and Keystore. The
PBKDF functionality uses 10000 Hash rounds and a 512-bit salt stored in
same file as password hash. The key size is 256-bits. Note: none of the
TSFs rely on the KEKs generated using PBKDF.
The filesystem encryption uses scrypt, which generates a KEK used for
software based filesystem encryption. However this KEK is unused since
TOE is configured for HW based filesystem encryption where key comes
from hardware RNG.
So the number of hash rounds is no applicable. Using scrypt parameters
used are N=15, r=3, P=1, and key size 256-bits.
For more information see FCS_RBG_EXT.1.

FCS_CKM_EXT.4 Cryptographic keys that are no longer needed are destroyed. The
exceptions to this are public keys (that protect the boot chain and software
updates) and the REK, which are never cleared. However, these are stored
in the secure hardware module preventing the key to leave that module.
There are several different ways keys are destroyed:
• Encrypted keys are “destroyed” by destroying the encryption key with

which they were encrypted.
• Keys stored in volatile memory (RAM) are destroyed by a single

direct overwrite of zeros, following by a read-verify.
• Keys stored in non-volatile EEPROM are destroyed by a single direct

overwrite consisting of a pseudo random pattern using the RBG
function (FCS_RBG_EXT.1) followed a read-verify.

• Keys stored in non-volatile flash memory are destroyed by a single
direct overwrite consisting of zeros followed by a read-verify.

• For non-volatile memory other than EEPROM and flash, the
destruction shall be executed by overwriting three or more times with
a random pattern that is changed before each write.

See Table 2 in section 10.1.1 for a description of the different types of
keys.

FCS_CKM_EXT.5 The TOE will perform a wipe of keys (and user data) that is triggered
either by a certain number of failed authentication attempts
(FIA_AFL_EXT.1) or by the user (or administrator) actively doing a wipe
(FMT_SMF_EXT.1).
For volatile memory, the wipe is done by a single direct overwrite
consisting of zeroes following by a read-verify.
For non-volatile EEPROM, the destruction is executed by a single direct
overwrite consisting of a pseudo random pattern using the TSF’s RBG,
followed a read-verify. For non-volatile flash memory, the destruction
shall be executed by a single direct overwrite consisting of zeros followed
by a read-verify. For non-volatile memory other than EEPROM and flash,
the destruction shall be executed by overwriting three or more times with

Common Criteria Guide for Xperia Devices 53

a random pattern that is changed before each write. The TOE will perform
a power cycle at the end of the wipe operation.

FCS_CKM_EXT.6 The salt generated is 256 bits generated in accordance with NIST Special
Publication 800-90A using Hash_DRBG (any). Salt is used for the
password protection of encrypted file systems. Salt is available from
/dev/random which obtain its random source from the hardware secure
module.

FCS_CKM_EXT.7 The ECDH public/private key pairs are generated every time a pairing is
done. Initially, each device generates its own Elliptic Curve Diffie-
Hellman (ECDH) public-private key pair. This key pair needs to be
generated only once per device and may be computed in advance of
pairing. A device may, at any time, choose to discard its public-private
key pair and generate a new one, although there is not a requirement to do
so. In particular the implementation does not permit the use of static
ECDH key pairs.

FCS_COP.1(1) The TOE performs encryption/decryption in accordance with a specified
cryptographic algorithms
• AES-CBC (as defined in FIPS PUB 197, and NIST SP 800-38A)

mode,
• AES-CCMP (as defined in FIPS PUB 197, NIST SP 800-38C and

IEEE 802.11-2012), and
• AES Key Wrap (KW) (as defined in NIST SP 800-38F),
• AES-GCM (as defined in NIST SP 800-38D),
• AES-XTS (as defined in NIST SP 800-38E) mode
Using the cryptographic key sizes 128-bit and 256-bit.

FCS_COP.1(2) The TOE performs cryptographic hashing in accordance with specified
cryptographic algorithm SHA-1 and SHA-256 and message digest sizes
160 and 256 bits that meets: FIPS Pub 180-4. The HMAC SHA-1 and
SHA-256 is used as part of FCS_COP.1(4).

FCS_COP.1(3) The TOE performs cryptographic signature generation and verification in
accordance with:
• RSA schemes using cryptographic key sizes of 2048-bit or greater

that meet the following: FIPS PUB 186-4, “Digital Signature
Standard (DSS)”, Section 4

• ECDSA schemes using “NIST curves” P-256, P-384 and P-521 that
meet the following: FIPS PUB 186-4, “Digital Signature Standard
(DSS)”, Section 5.

FCS_COP.1(4) The TOE performs keyed-hash message authentication in accordance with
HMAC-SHA-1 and HMAC-SHA-256, and cryptographic key sizes 160
and 256 message digest sizes (MAC length) 160 and 256 bits that meet the
following: FIPS Pub 198-1, "The Keyed-Hash Message Authentication
Code, and FIPS Pub 180-4, “Secure Hash Standard. The block sizes are
512 for SHA-1 and SHA-256..

FCS_COP.1(5) The TOE performs password-based key derivation functions (PBKDF) in
accordance with PBKDF2 using the algorithms HMAC-SHA-1 and SHA-
256 with 32768 iterations and output cryptographic key sizes 256 that
meet the following: NIST SP 800-132.
While PBKDF2 is available, it is not used by any TSF, as described under
FCS_CKM_EXT.3 The PBKDF provided by the TOE is described here:
http://android-developers.blogspot.se/2013/02/using- cryptography-to-
store-credentials.html

FCS_HTTPS_EXT.1 The TOE implements HTTPS protocol compliant with RFC 2818 using
TLS (as described in FCS_TLSC_EXT.2).

Common Criteria Guide for Xperia Devices 54

FCS_IV_EXT.1 The TOE generates initialization vectors in accordance with [MDPPF]
Table 14: References and IV Requirements for NIST-approved Cipher
Modes. The TOE generates IVs within the hardware module for data
storage encryption and for key storage encryption. The TOE uses AES-
XTS mode for data encryption and AES-CBC for key storage, both using
256 bit keys.

FCS_RBG_EXT.1 The TOE provides a deterministic random bit generator as part of the
secure hardware module. The hardware random bit generation is not
exposed as an API, but internally used for generation of keys,
Initialization Vectors, random padding and other elements of secure
protocols that require randomness. It generates entropy in accordance with
NIST Special Publication 800-90A using Hash_DRBG (any) with 256 bits
security strength (in according to NIST SP 800-57).

FCS_SRV_EXT.1 The TOE provides cryptographic services to applications as a
dynamically-loadable library used by the secure hardware module
performing the keystore services.

FCS_STG_EXT.1 The TOE is using the FIPS 140-2 validated Qualcomm QTI Crypto
Engine Core as a trusted execution environment for the protection of keys
and for cryptographic operations. Access to this keystore is provided by
the Keymaster API, the Hardware Abstraction Layer (HAL).

FCS_TLSC_EXT.1 The TOE implements TLS 1.0 and TLS 1.1 (RFC 4346), and TLS 1.2
(RFC 5246) supporting the following ciphersuites:
• TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246
• TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246
The TSF verifies that the server certificate presented for EAP-TLS (as part
of WPA2) chains to one of the specified CAs. The server certificate is
validated using the Android package java.security.cert methods for
validating certificates and certification paths (certificate chains
establishing a trust chain from a certificate to a trust anchor). It is
documented in
http://developer.android.com/reference/java/security/cert/package-
summary.html.

FCS_TLSC_EXT.2 The TOE implements TLS 1.2 (RFC 5246) supporting the following
ciphersuites:
• TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246
• TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246
• TLS_DHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC

5246
• TLS_DHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC

5246
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC

4492
• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC

4492
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in

RFC 4492
• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in

RFC 4492
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined

in RFC 5289
• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined

in RFC 5289

Common Criteria Guide for Xperia Devices 55

The TOE verifies that the presented identifier matches the reference
identifier according to RFC 6125. The TOE supports mutual
authentication using X.509v3 certificates. The TOE provides mobile app
the use of TLS versions 1.0, 1.1, and 1.2, including all ciphersuites
described above. The TOE supports Common Name (CN) and Subject
Alternative Name (SAN) (DNS and IP address) as reference identifiers.
The TOE supports client (mutual) authentication.
The Android core libraries of the TOE supports certificate pinning. Pinned
domains will receive a certificate validation failure if the certificate does
not chain to a set of expected certificates. This protects against possible
compromise of Certificate Authorities.
The TOE presents the signature_algorithms extension in the Client Hello
with the supported_signature_algorithms value containing the following
hash algorithms: SHA256, SHA384, SHA512 and no other hash
algorithms. They are supported by default.
The TOE supports by default the evaluated elliptic NIST curves
secp256r1 and secp384r1.

FDP_ACF_EXT.1 As described in section 10.2 User Data Protection, an Android application
can only access a limited range of system resources. These restrictions are
implemented in one of three different ways. Some capabilities are
restricted by an intentional lack of APIs to the sensitive functionality (e.g.
there is no Android API for directly manipulating the SIM card). In some
instances, the separation of roles provides a security measure, as with the
per-application isolation of storage. In other instances, the sensitive APIs
are intended for use by trusted applications and protected through the
Android permission mechanism. For more detailed information see
section 10.2.  

FDP_DAR_EXT.1 As described in section 3.4.1.2 and 10.5.4, the TOE offer full encryption
for all user data in the internal storage, as well as any external SD card.
With the exception of the boot image of the TOE that is integrity protected
as part of security boot, TSF data is signed or encrypted and user data is
subject to data encryption.

FDP_IFC_EXT.1 The TOE provides an IPsec VPN Client that ensures that all traffic (other
than explicitly excluded) to establish the VPN connection flows through
the VPN. The TOE routes all packets through the iptables firewall (default
module in Android) when the VPN is active and there is no difference in
the routing of IP traffic when using different supported baseband
protocols.
The VPN support has two parts:
1. Part 1 is a IPsec stack in Linux kernel. The IPsec stack integrated in

the Linux kernel since 2.6 (NETKEY) was originally based on the
KAME stack (at least in regards to the API). The source code is part
of the kernel repository, where the main components are found in the
net/xfrm folder, including the implementation of the Netlink/XFRM
configuration interface.

2. The 2nd part is a user-space client that will configure the keying
process. In Android case we use automatic keying provided by a user
space IKE daemon racoon (ipsec-tools 0.7.3 http://ipsec-
tools.sourceforge.net/), that way we do not have to manually install
SAs and policies and get ephemeral encryption/integrity keys
established via Diffie-Hellman during IKE.

For VPN encryption the TOE uses the OpenSSL library provided as part
of Android.
Android supports network security using VPN:
1. Always-on VPN – The VPN can be configured so that applications

don’t have access to the network until a VPN connection is

Common Criteria Guide for Xperia Devices 56

established, which prevents applications from sending data across
other networks.

2. Per User VPN – On multiuser devices, VPNs are applied per Android
user, so all network traffic is routed through a VPN without affecting
other users on the device.

3. Per Profile VPN – VPNs are applied per Work Profile, which allows
an IT administrator to ensure that only their enterprise network traffic
goes through the enterprise- Work Profile VPN—not the user’s
personal network traffic.

4. Per Application VPN – Android provides support to facilitate VPN
connections on allowed applications or prevents VPN connections on
disallowed applications.

FDP_STG_EXT.1 The TOE has a build in Trusted Anchor Database containing the built-in
certificates. The user can disable certificates and add additional
certificates using the user menu. The MDM can also disable or add
certificates using the MDM API. The built-in certificates are protected, as
they are part of the TSF’s read only system partition, while the TOE
protects user-loaded certificates by storing them with appropriate
permissions to prevent modification by mobile applications. The TOE also
stores the user-loaded certificates in the user’s Keystore along with the
user data, while that is hardware protected.

FDP_UPC_EXT.1 The TOE provides the following protocols for user data transfer: TLS,
HTTPS, Bluetooth DR/EDR and Bluetooth LE. The following APIs are
available for:
• TLS – javax.net.ssl.SSLContext:

http://developer.android.com/reference/javax/net/ssl/SSLContext.htm
l

• HTTPS – javax.net.ssl.HttpsURLConnection:
http://developer.android.com/reference/javax/net/ssl/HttpsURLConne
ction.html

• Bluetooth – android.bluetooth:
http://developer.android.com/reference/android/bluetooth/package-
summary.html

FIA_AFL_EXT.1 As described in section 10.3 Identification and Authentication, the TOE
maintains a counter of failed authentication attempts. After a certain
(configurable to be between 1-100) number of consecutive failed
authentications the TSF will perform a factory reset, which means that it
will wipe all data and application from the TOE. The counter is written
into non-volatile memory and will remain over power-cycles and will only
be reset upon a successful authentication.

FIA_BLT_EXT.1 As described in section 10.3 Identification and Authentication, the
Bluetooth different types of authentication are supported, and how user
confirmation is necessary.

FIA_PAE_EXT.1 The TOE conforms to IEEE Standard 802.1X for a Port Access Entity
(PAE) in the “Supplicant” role for Wireless connections.

FIA_PMG_EXT.1 The TOE can be configured for a password policy that supports passwords
consisting of any combination of upper and lower case letters, numbers,
and any special character available on the keyboard. The minimum size of
such passwords can also be defined via a Configuration Profile.

FIA_TRT_EXT.1 The TOE enforces a delay of at least 5 seconds between incorrect
authentication attempts.

FIA_UAU.7 The TOE will obscure passwords entered by the user. By default, display
the most recently entered character of the password briefly or until the

Common Criteria Guide for Xperia Devices 57

user enters the next character in the password is entered. Characters
entered are displayed as a dot when obscured.

FIA_UAU_EXT.1 The TOE provides encryption of data and keys stored on the device to
prevent unauthorized access to encrypted data. Access to encrypted data is
only provided once the user has been successfully authenticated.

FIA_UAU_EXT.2 The TOE allows certain actions to be performed when in a locked state.
The allowed actions are identified in the SFR FIA_UAU_EXT.2.

FIA_UAU_EXT.3 The TOE requires the user to authenticate in order to unlock and to be
able to authenticate keystore, change password, change unlock method,
allow boot-loader to be unlocked, factory reset from settings menu.

FIA_X509_EXT.1 The TOE validates X.509 certificates using the certificate path validation
algorithm defined in RFC 5280. Certificate paths must terminate in the
Trust Anchor Database for a certificate to be regarded as trusted. The
extendedKeyUsage field in the certificate is validated to ensure that the
key is used in accordance with its usage specification. CA certificates are
only accepted if the basicConstraints extension exists and the CA flag in
this extension is set. The validation also verified include checking the
revocation status of the certificate using a Certificate Revocation List
(CRL) as specified in RFC 5759.

FIA_X509_EXT.2 The TOE uses X.509v3 certificates as defined by RFC 5280 to support
authentication for EAP-TLS exchanges and IPsec, TLS, HTTPS and code
signing for system software updates, code signing for mobile applications,
code signing for integrity verification. Please, see the guidance for the
management of certificates.
The connection will be rejected when, during a connection establishment,
a certificate validity check fails, i.e. certificate cannot be verified
(including validity, certification path, and revocation through CRLs.

FIA_X509_EXT.3 The TOE’s provides apps the java.security.cert Java API class
of methods for validating certificates and certification paths. More
information is available here:
http://developer.android.com/reference/java/security/cert/package-
summary.html

FMT_MOF_EXT.1 In FMT_SMF_EXT.1 indicates the management functions and the entity
(user or administrator) that can perform the function. A TOE that is
enrolled grants the MDM exclusive management rights to certain
functions. This restricts the user from performing certain management
functions. If a user fails to comply with the policies, the TOE will be
unenrolled.

FMT_SMF_EXT.1 In FMT_SMF_EXT.1 indicates the management functions that can be
performed divided into the following categories:
• Management functions available (in general) are listed under

FMT_SMF_EXT.1
• Management functions that are provided to the user and not the

administrator are listed under “User”, indicated in [MDFPP] as
FMT_MOF_EXT.1.1

• Management functions provided to the administrator (using an MDM
agent API) are listed under “Administrator”

• Management functions for which the administrator may set a policy
that restricts the user from performing that function are listed in
“MDM policy”, indicated in [MDFPP] as FMT_MOF_EXT.1.2.

FMT_SMF_EXT.2 When unenrolled, the TOE removes all MDM policies. The TOE also
provides the capability to the MDM Agent to wipe all protected data and
to remove any installed enterprise applications.

Common Criteria Guide for Xperia Devices 58

FPT_AEX_EXT.1 The TOE provides address space randomization as part of the Linux
kernel. This is described in section 10.5 Protection of the TSF.

FPT_AEX_EXT.2 The TOE relies on the memory management of the Linux kernel that
utilizes the MMU to enforce read, write, and execute permissions on all
pages of virtual memory and ensures that write and execute permissions
are not simultaneously granted on all memory. Furthermore, the TOE
relies on the hardware-based No eXecute (NX) to prevent code execution
on the stack and heap.

FPT_AEX_EXT.3 As described in section 10.5 Protection of the TSF the TOE's provides the
ProPolice mechanisms to prevent stack buffer overruns (-fstack-protector)
in addition to taking advantage of hardware-based hardware-based No
eXecute (NX) to prevent code execution on the stack and heap.

FPT_AEX_EXT.4 The TOE provides a number of different mechanisms to protect the TOE
from unauthorized modifications. In addition to the detection of
unauthorized modifications provided by secure boot, the TOE also relies
on process separation and Linux mechanisms, such as assignment of
unique UID and sandboxing. This is described in section 10.5 Protection
of the TSF. The TOE protects itself from USSD and MMI code by
preventing its execution when in a locked state. The TOE does not support
any auxiliary boot modes.

FPT_KST_EXT.1 Outside of the secure hardware module the TOE does not store any plain
text material in non-volatile memory. It also provides full disk encryption
of all user and TSF data and all keys are in addition wrapped with a KEK.
As part of the boot process the TOE must decrypt the encrypted partition
as well as the KEK in order to access the encryption keys. However,
certain TSF data, such as non-confidential parameters are not encrypted,
since it would not add any additional security by encrypting them, for
example configurations in trim area.

FPT_KST_EXT.2 The TOE uses a hardware protected keystore for storing the keys. It does
not provide any way to export plaintext keys. The FIPS 140-2 validated
security module (NIST ID 2423) ensures that keys are protected from
being exported.
Access to the Keystore is provided by the Keymaster API, the Hardware
Abstraction Layer (HAL). The key material is handled within the keystore
only and thereby prevents any unencrypted key material to be exported.
See section 10.1 Cryptographic Support.

FPT_KST_EXT.3 The TOE does not provide any way to export plaintext DEKs or KEKs
(including all keys stored in the keystore) as the TOE chains all KEKs to
the HEK/REK as described in section 10.5.

FPT_NOT_EXT.1 The TOE provides self-test that is performed during boot. When the
verified boot fails, the TOE transitions to a non-operational mode. The
user may attempt to power-cycle the TOE to see if the failure condition
persists, and if it does persist, the user may attempt to boot to the recovery
mode/kernel to wipe data and perform a factory reset in order to recover
the device.

FPT_STM.1 TOE uses time from system clock, which can use time from NITZ or NTP
depending on user setting. Applications also have a direct API to get NTP
time directly via SNTP Client API. The system clock is used for password
lifetime check, user inactivity locking and certificate validations. Note:
FOTA does not use time when validating update images. For more
information see section 10.5

FPT_TST_EXT.1 The TOE uses a FIPS 104-2 validated (NIST ID 2614) hardware module
for cryptographic operations. It runs a suite of self-tests during initial
start-up as required by FIPS 140-2 for all cryptographic functionality.

Common Criteria Guide for Xperia Devices 59

FPT_TST_EXT.2 Each step of the boot-up and the software update processes contains

components that are cryptographically signed to ensure integrity of the
TSF components, as a basis for trusting the security functionality it
provides.
Details on the boot mechanism is provided in section 10.5.5

FPT_TUD_EXT.1 The TOE provides users the ability to query the current version of the
TOE firmware/software; the current version of the hardware model of the
device; and the current version of installed mobile applications, as
described in section 10.5.

FPT_TUD_EXT.2 The TOE can be updated using the Firmware over the Air (FOTA) as
described in more detail in section 10.5.6. Each step of the software
update processes contains components that are cryptographically signed
by Sony to ensure integrity of the TOE update components. Also all
application must be digitally signed and the signatures are validated
before the TOE will install the application.

FTA_SSL_EXT.1 The TOE transits into a locked state either after a certain amount of user
inactivity or directly initiated by the user or by the MDM. When going
into a locked state the display is overwritten. This is further described in
section 10.6 TOE Access.

FTA_TAB.1 The TOE displays an advisory warning message regarding unauthorized
use of the TOE.

FTA_WSE_EXT.1 The TOE allows the user and the administrator (using an MDM) to
specify the wireless networks (SSIDs) to which the TSF may connect.

FTP_ITC_EXT.1 The TOE trusted communication channels between itself and other trusted
IT products through the use of 802.11-2012, 802.1X, EAP-TLS, TLS and
HTTPS protocols. It is always the TOE (or any of its application) that
initiates such a communication via a trusted channel. The TOE provides
its application access to trusted channels using an API provided by the
TOE.

Common Criteria Guide for Xperia Devices 60

11 Abbreviations, Terminology and References

11.1 Abbreviations and Terminology

AES Advanced Encryption Standard

API Application Programming Interface

DEK Data Encryption Key

EDR Enhanced Data Rate
An optional part of the Bluetooth specification that provides a faster data rate (speed) and
possibly improved battery life. Both devices need to support EDR, in which case EDR is used
automatically.

FEK File Encryption Key

FOTA Firmware Over The Air
A feature where users can update their handset firmware over the carrier network. It removes the
need of special cables, computers or third-party programs.

GPS Global Positioning System
Global Positioning System that enables GPS receivers to determine their current location, time
and velocity. The GPS satellites are maintained by the United States Air Force.

GTK Group Temporal Key

KEK Key Encryption Key

MAC Mandatory Access Control

MDM Mobile Device Management

MITM Man in the Middle

MMS Multimedia Message Service

OTA Over The Air
In this context this term refers to downloading or uploading content or software (such as
downloading ringtones, uploading images, etc.).

PIN Personal Identification Number

PKI Public Key Infrastructure

REK Root Encryption Key

SMS Short Message Service

TEE Trusted Execution Environment, a secure area of the main processor of a smart phone.

TOE Target of Evaluation

VPN Virtual Private Network

WLAN Wireless Local Area Network

11.2 References

[CC] Common Criteria for Information Technology Security Evaluation
Part 1: Introduction and general model, September 2012, Version 3.1, Revision 4, CCMB-
2012-09-001

Common Criteria Guide for Xperia Devices 61

Part 2: Security functional components, September 2012, Version 3.1, Revision 4, CCMB-
2012-09-002
Part 3: Security assurance components, September 2012, Version 3.1, Revision 4, CCMB-
2012-09-003
Common Methodology for Information Technology Security Evaluation, Evaluation
Methodology, September 2012, Version 3.1, Revision 4, CCMB-2012-09-004

[MDFPP] Protection Profile for Mobile Device Fundamentals, Version 2.0, 17 September 2014

[TD0034] Revision of Test 5 in FCS_TLSC_EXT.1.1 & EXT.2.1 reqs in MDF PP V2.0, MDM PP V2.0,
MDM Agent PP V2.0

[TD0044] Update to FMT_SMF_EXT.1

[TD0057] Update to TD0047 for Non Wear Leveled Flash Memory

[TD0058] MDFPP v2.0 FMT_SMF_EXT.1, function 15

[TD0059] FCS_SRV_EXT.1 & CAVS

[TD0060] FDP_IFC_EXT.1 & FMT_SMF_EXT.1 Function 3

[TD0064] Whitelisting SSIDs (FMT_SMF_EXT.1, function 6) in MDF PP v2.0

